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Abstract

We study the macroeconomic implications of wage-rigidity-induced job separations in an

environment with four characteristics: worker productivity shocks, staggered wage contracts,

search frictions, and two-sided lack of commitment. Endogenous quits and layoffs are uni-

laterally initiated whenever a worker’s wage-to-productivity ratio moves outside an inaction

region. We derive sufficient statistics for the labor market response to aggregate shocks based

on the distribution of workers’ wage-to-productivity ratios, which we show how to identify

using microdata on wage changes and worker flows between jobs. We demonstrate that the

model matches empirical evidence of the distinction between quits versus layoffs and wage

rigidity’s link to the sensitivity of job separations to aggregate fluctuations, while amplifying

business-cycle shocks.
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1 Introduction

Since Bewley (1999), there has been mounting empirical evidence that wage rigidity is linked to

the sensitivity of job separations to economic fluctuations. This evidence poses a challenge to the

tradition of labor market models in which wages can be costlessly and instantaneously adjusted

(e.g., Mortensen and Pissarides, 1994). In this tradition, job separations are mutually agreed upon

and occur only if the worker-firm match surplus is exhausted, independent of the prevailing wage

rate. Thus, existing studies have not fully accounted for the empirical link between wage rigidity

and job separations in relation to macroeconomic outcomes such as total employment and output.

We aim to fill this gap by studying the aggregate implications of wage-rigidity-induced job

separations in an equilibrium labor market model with four features. First, there are idiosyncratic

and aggregate shocks to worker productivity. Second, wages are fixed within staggered contracts.

Third, job search is frictional. Fourth, neither workers nor firms can commit to staying in a match.

The combination of all four model features generates endogenous job separations linked to wage

rigidity. Productivity shocks cause the output in a match to fluctuate. Due to wage rigidity, this

leads to fluctuations in the ex-post surplus split between a matched worker and firm. Search

frictions impose a cost for workers to find a new employer and for firms to find a new employee.

Limited commitment means that both workers and firms choose privately optimal job-separation

strategies in each state of the world. Consequently, the wage-to-productivity ratio, which is the

state variable in a worker-firm match, moves within an inaction region until a job separation occurs

in the form of either a worker-initiated quit or a firm-initiated layoff. Combining these four features

yields a model with the minimum ingredients needed to characterize how wage-rigidity-induced

job separations at the micro level affect the propagation of shocks at the macro level.

We first study a stationary environment in continuous time. The labor market is populated by a

unit mass of heterogeneous workers and an endogenous mass of homogeneous firms. Workers’

output depends on their employment status and idiosyncratic productivity, which follows a

geometric Brownian motion. The labor market is frictional, with unemployed workers and idle

firms directing their search across submarkets indexed by their wage rate and productivity, as in

Shimer (1996) and Moen (1997). In addition to search frictions, worker-firm matches are subject

to two contractual frictions. First, wages are rigid within staggered contracts à la Calvo (1983).1

1We follow a long tradition of modeling time-dependent wage rigidity, as in Erceg et al. (2000). We abstract from
such rigidity’s microfoundations, but we think of it as capturing a list of reasons surveyed by Bewley (1999), including
contracting costs, worker morale, and information asymmetries. Our model produces inaction in job separations, as
would a model of state-dependent wage rigidity due to adjustment costs. See Alvarez et al. (2016b) for a discussion of
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Second, neither workers nor firms can commit to staying in a match, which can be unilaterally

dissolved in the form of a quit initiated by the worker and a layoff initiated by the firm.

In this environment, a matched worker and firm play a nonzero-sum stochastic differential game

with stopping times (Bensoussan and Friedman, 1977). Their interaction forms a game due to each

party’s strategic choice of their own stopping times as functions of the state, which defines when

to separate from the match. The game is stochastic and differential because idiosyncratic worker

productivity follows a Brownian motion. It is nonzero-sum because the equilibrium match surplus

is positive. To characterize the solution to this problem, we leverage powerful tools from functional

analysis based on variational inequalities (Lions and Stampacchia, 1967).

The rigidity of wages implies that the prevailing wage rate, in addition to productivity, becomes

part of the state in a worker-firm match. However, we show that a matched worker’s and firm’s

behavior can be written in terms of only a single state variable: the wage-to-productivity ratio.

A match is dissolved when this ratio falls outside an inaction region with two thresholds. On

one side, workers quit when their wage-to-productivity ratio falls below their optimally chosen

lower threshold. On the other side, firms lay off workers whose wage-to-productivity ratio rises

above their optimally chosen upper threshold. Endogenous job separations due to two distinct

outcomes—i.e., quits and layoffs—are unilateral in the sense that they occur voluntarily in the eyes

of one party, even if they are involuntary in the eyes of the other party (McLaughlin, 1991).

Our theoretical analysis yields three main results. First, we prove the existence and uniqueness

of an equilibrium. This result requires substantially different methods than those in existing models

of search and matching, which we extend to a continuous-time setting with wage rigidity and

endogenous separations. Second, we provide a novel characterization of match surplus, entry

wages, job-finding rates, and continuation regions under inaction in job separations by linking

them to the expected discounted match duration, which here—unlike in models with flexible wages

or full commitment—distinctly depends on rent sharing between a worker and a firm. Third,

we demonstrate that two-sided lack of commitment has implications for labor markets that are

profoundly different from prominent models of inaction in product pricing and investment (e.g.,

Barro, 1972; Bernanke, 1983). In our labor market context, the ability of workers and firms to

unilaterally separate bounds the option value of a match, even as the volatility of productivity

shocks grows unboundedly. Compared to Sheshinski and Weiss (1977), the quit threshold and entry

wage in our environment are less responsive to expected productivity growth and trend inflation.

the relationship between time- and state-dependent pricing models.
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Having characterized the stationary economy, we then introduce aggregate shocks. To this end,

we assume that incumbents’ wages are nominally rigid while there are fluctuations in aggregate

revenue productivity (TFPR)—i.e., either aggregate physical productivity (TFPQ) or the price level.

Such aggregate shocks shift incumbents’ TFPR-adjusted wages, leading to movements in the

rate of endogenous job separations in the form of quits and layoffs. Under flexible entry wages,

the wage that unemployed workers search for responds to the aggregate shock. Motivated by

the allocative role of new-hire wages (Pissarides, 2009), we also study rigid entry wages, under

which unemployed workers search for the same wage level as before the aggregate shock, thereby

changing firms’ vacancy posting incentives. In this environment, inflation can “grease the wheels

of the labor market” by affecting both job-separation (i.e., quit versus layoff) and job-finding rates.

To study the effects of a TFPR shock on aggregate employment, we analyze the economy’s

cumulative impulse response (CIR), defined as the area under an impulse response function (IRF). To

this end, we extend the seminal work of Alvarez et al. (2016a) on sufficient statistics in the product

market to a labor market context, which yields substantively new insights. Under flexible entry

wages, the CIR of aggregate employment is fully described by three data moments: the job-finding

rate, the variance of workers’ wage changes across jobs, and the skewness of wage changes across

jobs. That skewness appears in the sufficient statistic is a novel result specific to our labor market

context. Intuitively, wage changes between jobs reflect workers’ wage-to-productivity ratios, the

skewness of which reflects the relative mass of workers near the quit versus layoff thresholds.

Under rigid entry wages, the CIR of aggregate employment additionally depends on the job-

finding rate’s elasticity with respect to the aggregate shock, which itself is a function of the share of

inefficient job separations. Intuitively, an increase in TFPR incentivizes firms to post more vacancies,

but the magnitude of this effect is decreasing in the share of inefficient job separations because

firms choose when to lay off workers but do not control workers’ quit decision, which limits a

firm’s expected returns on vacancies.

While our model highlights novel theoretical mechanisms at play in labor markets with wage-

rigidity-induced job separations, we also explore the theories implications vis-à-vis the data. To

this end, we use a calibrated version of our model to replicate recent empirical evidence of the

distinction between quits versus layoffs and wage rigidity’s link to the sensitivity of job separations

to aggregate shocks. With the quantitative version of our model in hand, we then compute our

sufficient statistic for the CIR of aggregate employment to an unanticipated aggregate shock, which

gives rise to amplification of business-cycle fluctuations.
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Related Literature. Relative to the existing literature, we make two contributions. Our first

contribution is to introduce a link between wage rigidity and job separations into a macroeconomic

framework. Business-cycle models have highlighted wage rigidity as the key friction that generates

a realistic transmission of aggregate shocks (e.g., Broer et al., 2020, 2023; Auclert et al., 2023a,b).

Recent search-theoretic advances have shed light on the role of wage rigidity in amplifying un-

employment fluctuations through job creation, following Shimer (2005a). These models assume

bilaterally efficient contracts, as in Hall (2005), which preclude the dissolution of matches with

positive surplus, so there is no effect of wage rigidity on job separations.2 In this sense, existing work

has satisfied the constraints of the Barro (1977) critique of inefficient outcomes under long-term

labor contracts. While this research agenda has produced many important insights, it is unable to

speak to mounting empirical evidence of wage rigidity’s link to the sensitivity of job separations to

aggregate shocks,3 the distinction between quits versus layoffs,4 and bilaterally inefficient job sepa-

rations.5 We add to this literature an equilibrium model that is consistent with the above-referenced

empirical evidence while yielding an analytical characterization of its aggregate dynamics.

In light of this first contribution, our main insights are analytical in nature and pertain to the

labor market propagation of aggregate shocks in the presence of endogenous quits and layoffs.

This complements recent contributions by Carlsson and Westermark (2022) and Gertler et al. (2025),

who study business-cycle models with endogenous layoffs but without endogenous quits, and by

Heathcote and Cai (2023), who study the optimal design of UI with endogenous quits but without

endogenous layoffs. Our paper is also complementary to Mueller (2017), who numerically solves a

model with endogenous separations due to staggered wage contracts but focuses on the model’s

implications for measures of wage cyclicality. Related work by Gertler et al. (2008, 2020), Gertler and

Trigari (2009), and Blanchard and Galí (2010) points to the possibility of endogenous job separations

arising due to the interaction between wage rigidity and only aggregate productivity shocks but

abstracts from their occurrence in practice. In our setting with additional idiosyncratic productivity

2Similarly, the wage-setting protocols in Alvarez and Shimer (2008), Rudanko (2009), Zanetti (2011), Michaillat (2012),
Christiano et al. (2016), Schaal (2017), Ravn and Sterk (2020), Gornemann et al. (2022), Birinci et al. (2024a), Elsby et al.
(2024), Gaur et al. (2024), Fukui (2025), and Moscarini and Postel-Vinay (2025) shield job separations from wage rigidity.

3Empirical work has linked wage rigidity to employment fluctuations (Card, 1990), job separations (Schmieder and
von Wachter, 2010; Murray, 2021), the incidence of layoffs and quits (Ehrlich and Montes, 2024; Dobbin et al., 2025), and
the transmission of monetary policy (Olivei and Tenreyro, 2007, 2010; Coglianese et al., 2024; Faia and Pezone, 2024).

4Among all unemployment inflows, quits are procyclical, while layoffs are countercyclical (Elsby et al., 2009, 2010,
2011; Birinci et al., 2024b; Ellieroth and Michaud, 2024; Graves et al., 2024).

5Quasi-experimental evidence from changes in unemployment insurance (UI) policies points toward inefficient job
separations consistent with wage rigidity (Jäger et al., 2022). Furthermore, many UI recipients would accept significant
wage cuts in lieu of being laid off (Davis and Krolikowski, 2025), which employers do not consider (Bertheau et al., 2025).
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shocks, endogenous job separations play a central role. Integrating a link between wage rigidity

and job separations into an equilibrium framework yields a new channel through which aggregate

employment responds to real or nominal shocks at the macro level.

Our second contribution is to extend the economics of inaction to the study of frictional labor

markets characterized by wage rigidity.6 In existing work, job separations are modeled either as

exogenous shocks (e.g., Ravn and Sterk, 2017) or as following a one-sided threshold rule in the

form of a positivity restriction on the worker-firm match surplus (e.g., Mortensen and Pissarides,

1994). The first class of models predicts counterfactually acyclical unemployment inflows (Elsby

et al., 2009), while the second features no meaningful distinction between quits versus layoffs

(McLaughlin, 1991). This motivates our modeling approach based on a two-sided threshold rule,

according to which endogenous job separations in the form of worker quits and firm layoffs occur

at opposite ends of an inaction region over the wage-to-productivity ratio in a match. We add to

this literature the first sufficient statistic for the labor market response to aggregate shocks.7

In light of this second contribution, we adapt the powerful tools of stochastic control with fixed

adjustment costs (Stokey, 2009) to our labor market setting with two distinct features: strategic

worker-firm interactions and endogenous state switching between employment and unemployment.

Both features set us apart from existing models of inaction (e.g., Golosov and Lucas Jr., 2007; Berger

and Vavra, 2015; Baley and Blanco, 2021, 2024; Alvarez et al., 2022, 2024b). In that context, Alvarez

et al. (2016a) link the CIR of aggregate output to the ratio of kurtosis to the frequency of price

changes in a class of pricing models. We complement their insights with our novel result that the

CIR of aggregate employment is proportional to the skewness of wage changes in our labor market

model. Skewness intuitively reflects asymmetry in the distribution of worker-firm matches over

the inaction region, outside of which job separations occur in the form of worker quits versus firm

layoffs, which move in opposite directions in response to real or nominal shocks.

Outline. The rest of the paper is organized as follows. Section 2 describes our model of wage-

rigidity-induced job separations. Section 3 derives sufficient statistics for the economy’s response

to aggregate shocks. Section 4 extends the baseline model and discusses its assumptions. Section 5

takes a first step toward quantifying our theory. Finally, Section 6 concludes.

6Prior studies have focused on inaction in labor markets that are frictionless (Hopenhayn and Rogerson, 1993; Alvarez
et al., 2024a) or not constrained by the type of wage rigidity we study (Alvarez and Shimer, 2011; Alvarez et al., 2024c).

7This adds to the literature on sufficient statistics in other contexts, including policy evaluation (Chetty, 2009),
distinguishing between macroeconomic models (Shimer, 2009), quantifying the role of search frictions (Vejlin and
Veramendi, 2023), and estimating forward-looking welfare measures (Baqaee et al., 2024).
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2 A Model of Wage-Rigidity-Induced Job Separations

In this section, we develop a model of job separations in the form of worker quits and firm layoffs

arising endogenously due to the combination of search frictions, idiosyncratic productivity shocks,

staggered wage contracts, and two-sided lack of commitment.

2.1 Environment

Time is continuous and indexed by t. A unit mass of heterogeneous workers and an endogenous

mass of homogeneous firms meet in a frictional labor market.

Preferences. Both workers and firms discount the future at rate ρ > 0. Firms maximize profits.

Workers have risk-neutral preferences over consumption streams {Ct}∞
t=0 given by E

[´ ∞
0 e−ρtCt dt

]
.

Technology. A worker’s flow income depends on their productivity Zt and their employment

state Et, which can be either employed (h) or unemployed (u). Employed workers produce Yt = Zt

and consume their wage Wt. Unemployed workers consume B̃Zt from home production, with

B̃ ∈ (0, 1). Henceforth, lower-case letters denote the logarithm of variables in uppercase.

Stochastic Process. Workers’ idiosyncratic productivities follow a geometric Brownian motion,

dzt = γ dt + σ dW z
t , with drift γ, volatility σ, and a Wiener process W z

t that is iid across workers.

Search Frictions. Unemployed workers and idle firms direct their search across segmented

submarkets indexed by worker productivity z and the wage w. In each submarket (z; w), firms

post vacancies at flow cost K̃ez for K̃ > 0. Given U (z; w) unemployed workers and V(z; w) va-

cancies, a Cobb-Douglas matching function with constant returns to scale produces m(z; w) =

U (z; w)αV(z; w)1−α matches, where α is the elasticity of matches with respect to the unemployed.

Given market tightness θ(z; w) := V(z; w)/U (z; w), workers’ job-finding rate is f (θ(z; w)) =

m(z; w)/U (z; w) = θ(z; w)1−α and firms’ job-filling rate is q(θ(z; w)) = m(z; w)/V(z; w) = θ(z; w)−α.

Existing matches can end for any of three reasons: they can be exogenously dissolved at Poisson

rate δ, or they can be endogenously and unilaterally dissolved by either the worker or the firm.

Wage Determination. While wages are competitively set at match formation, they are intermit-

tently rigid thereafter, with staggered wage renegotiations occurring at rate δr ≥ 0 and following a
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Nash bargaining protocol with worker weight α. We start by studying the limiting case with δr = 0.

We then extend our key insights to the case of δr > 0 in Section 4.8

Agents’ Choices. An unemployed worker’s choice of submarket (z; w) is associated with a

job-finding rate f (θ(z; w)). Exogenous separations occur at rate δ, inducing a stopping time τδ.

Given the wage w, a matched worker chooses a continuation productivity set Zh(w), inducing the

worker’s stopping time τh(z; w) = inf{t ≥ 0 : zt ∈ Zh(w)c, z0 = z}, where Xc := R\X. Similarly,

given w, a matched firm chooses a continuation productivity set Z j(w), inducing the firm’s stopping

time τ j(z; w) = inf{t ≥ 0 : zt ∈ Z j(w)c, z0 = z}. Agents’ stopping times must be measurable with

respect to their productivity history. Given the worker’s and the firm’s continuation sets and the

exogenous separation hazard, the match duration is the first stopping time in τ⃗m = (τh, τ j, τδ),

denoted τm = min{τh, τ j, τδ}. We naturally label a separation triggered by a worker as a quit (i.e.,

τm = τh), a separation triggered by the firm as a layoff (i.e., τm = τ j), and a separation triggered by

nature as exogenous (i.e., τm = τδ).

2.2 Block-Recursive Equilibrium (BRE)

A BRE can be described in two steps.9 In the first step, we describe the optimal search behavior of

unmatched workers and firms. Let u(z) be the value of an unemployed worker under the optimal

search policy given productivity z. Let θ(z; w) denote market tightness in submarket (z; w). Let

h(z; w) and j(z; w) be the equilibrium values of an employed worker and a filled job. The problem

of an unemployed worker is characterized by the Hamilton-Jacobi-Bellman (HJB) equation,

ρu(z) = B̃ez + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2 + max
w

f (θ(z; w))[h(z; w)− u(z)], (1)

with optimal search strategy w∗(z). Equation (1) states that unemployed workers’ flow value is that

of an asset with a return equal to the sum of flow dividends (i.e., home production) and expected

capital gains (i.e., productivity fluctuations and finding a job). Free entry requires that

min
{

K̃ez − q(θ(z; w))j(z; w) , θ(z; w)
}
= 0. (2)

Equation (2) dictates zero profits in open submarkets and nonpositive profits in closed ones.

8We treat wage rigidity as technological in nature, similar to adjustment costs in product pricing and investment.
9BRE objects do not depend on agents’ distribution, which we omit from notation, as in Menzio and Shi (2010, 2011).
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In the second step, which is the novel focus of this paper, we describe the strategic interaction

that forms part of the game between a matched worker-firm pair, which has three features. First,

payoffs are nonzero-sum, since the match flow value, ez, exceeds the flow value of separating, B̃ez.

Second, agents’ payoffs are stochastic and differential, since worker productivity z follows a Brownian

motion. Third, agents’ strategies consist of when to unilaterally separate from the match; i.e., the

stopping times implied by their continuation sets Zh(w) and Z j(w). Thus, the interaction between a

worker-firm pair can be formulated as a nonzero-sum stochastic differential game with stopping

times (Bensoussan and Friedman, 1977). The application of these mathematical methods in a labor

market context is different from existing work and a key contribution of this paper.

Value Functions. As long as one agent stays in the match with state z, the other agent chooses

whether to stay in the match or to separate, reflecting the two-sided lack of commitment. Thus, we

use variational inequalities to characterize the values of both agents. The HJB equation of a worker

employed at wage w with productivity z inside the firm’s optimal continuation set Z j∗(w) is

ρh(z; w) = max
{

ew + γ
∂h(z; w)

∂z
+

σ2

2
∂2h(z; w)

∂z2 + δ [u(z)− h(z; w)] , ρu(z)
}

. (3)

Equation (3) reflects the employed worker’s choice between staying matched and quitting the firm.

The flow value of staying is that of an asset for which the return is the sum of flow dividends (i.e.,

the wage) and expected capital gains (i.e., productivity fluctuations and separation). The flow value

of quitting the firm is simply that of unemployment. The variational inequality in equation (3)

satisfies h(·; w) ∈ C1(Z j∗(w)) ∩ C(R). That is, the value of the employed worker is continuously

once-differentiable inside the firm’s optimal continuation set and continuous everywhere. These

continuity and differentiability conditions correspond to the value matching and smooth pasting

conditions of the worker’s value function under their own best response. Importantly, a smooth

pasting condition characterizes the optimal boundary of the worker’s continuation region.

Analogously, the HJB equation of a firm employing a worker at wage w with productivity z

inside the worker’s optimal continuation set Zh∗(w) is

ρj(z; w) = max
{

ez − ew + γ
∂j(z; w)

∂z
+

σ2

2
∂2 j(z; w)

∂z2 − δj(z; w) , 0
}

. (4)

Equation (4) reflects the firm’s choice between staying matched and laying off the worker. The

flow value of staying is that of an asset for which the return is the sum of flow dividends (i.e.,
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profits) and expected capital gains (i.e., productivity fluctuations and separation). The flow value

of laying off the worker is simply that of being idle. The variational inequality in equation (4)

satisfies j(·; w) ∈ C1(Zh∗(w)) ∩ C(R). That is, the value of the matched firm is continuously once-

differentiable inside the worker’s optimal continuation set and continuous everywhere. Again, a

smooth pasting condition characterizes the optimal boundary of the firm’s continuation region.

If either agent dissolves the match, then the other agent receives their outside option value.

Therefore, the worker’s and the firm’s values of a match with productivity z and wage w satisfy:

h(z; w) = u(z) ∀z ∈ (Z j∗(w))c, (5)

j(z; w) = 0 ∀z ∈ (Zh∗(w))c. (6)

Equations (5)–(6) define each agent’s payoff outside the other agent’s continuation set. Value-

matching conditions imply the continuity of each agent’s value function at the boundaries of the

other agent’s continuation set. However, smooth pasting conditions do not apply to either agent’s

value at the boundary of the other agent’s continuation set because the HJB equations (3)–(4) do not

hold when an agent has no optimization problem to solve, which happens outside the other agent’s

continuation set.10 For the same reason, we do not require value functions to be differentiable in the

entire domain, but only in the part where an agent has a choice between staying matched or not.

Continuation Sets. Two sets of conditions characterize agents’ optimal continuation sets. First,

agents optimally choose to continue whenever

h(z; w) > u(z), (7)

j(z; w) > 0. (8)

Second, to resolve any ambiguity in the strategic choice of an indifferent party, we focus on the

socially (weakly) preferable outcome by invoking an equilibrium refinement. Specifically, we

assume that agents choose to continue whenever staying in the match is a weakly dominant

strategy. For any policy of the worker, the firm strictly prefers to continue the match if flow profits

are strictly positive—i.e., ez − ew > 0—because the firm always has the option of firing the worker

10For example, for z ∈ (Zh∗(w))c, 0 = ρj(z; w) < max{ez − ew + γ∂j(z; w)/∂z + (σ2/2)∂2 j(z; w)/∂z2 − δj(z; w) , 0}.
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in the future. Therefore, the firm’s optimal continuation set is

Z j∗(w) := int {z : j(z; w) > 0 or ez − ew > 0} . (9)

Analogously, the worker’s optimal continuation set includes all productivity levels for which the

sum of the current wage and the discounted capital gains from unemployment is positive:

Zh∗(w) := int
{

z : h(z; w) > u(z) or 0 < ew − ρu(z) + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2

}
. (10)

Intuitively, the unemployed worker’s HJB equation (1) implies 0 < ew − ρu(z) + γ(∂u(z)/∂z) +

(σ2/2)∂2u(z)/∂z2 if and only if B̃ez + maxw′ f (θ(z; w′))[h(z; w′)− u(z)] < ew. Thus, continuing

strictly dominates quitting precisely when the wage strictly exceeds the flow opportunity cost.

Figure 1 illustrates the equilibrium values and optimal policies of a worker-firm match. The

firm’s continuation set is Z j∗(w) = (z−(w), ∞), which contains productivities for which the

firm makes strictly positive flow profits—i.e., z > z̃−(w) := w—as well as productivities for

which the worker and the firm continue despite negative flow profits due to a positive and large

enough continuation value—i.e., z ∈ (z−(w), z̃−(w)). Analogously, the worker’s continuation set is

Zh∗(w) = (−∞, z+(w)), which contains productivities for which the worker’s wage strictly exceeds

the flow opportunity cost—i.e., z < z̃+(w), where z̃+ satisfies 0 = ew − ρu(z̃+) + γ∂u(z̃+)/∂z +

(σ2/2)∂2u(z̃+)/∂z2—as well as productivities for which the worker and the firm continue despite

the worker’s negative net flow value due to a positive and large enough continuation value—i.e.,

z ∈ (z̃+(w), z+(w)). The existence and uniqueness of a threshold characterizing each agent’s

separation policy are not assumptions but results formally derived below.

A Markov perfect equilibrium of this game is a fixed point between agents’ best-response map-

pings involving continuation productivity levels z, given wage w. To address the trivial multiplicity

of equilibria, our equilibrium definition implicitly imposes weakly dominant strategies.11

Definition 1. A BRE consists of a set of value functions {u(z), h(z; w), j(z; w)}, a market tightness

function θ(z; w), the matched worker’s and the matched firm’s continuation sets {Zh∗(w),Z j∗(w)}, and

the unemployed worker’s search strategy function w∗(z) s.t.:

1. Given h(z; w) and θ(z; w), u(z) solves (1) with optimal search strategy w∗(z).

2. Given j(z; w), market tightness θ(z; w) satisfies the free-entry condition (2).
11Supplementary Material I.1 derives the recursive equilibrium in continuous time from its discrete-time counterpart.

Supplementary Material I.2 shows the equivalence between sequential and recursive formulations of this environment.
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3. Given u(z) and Z j∗(z), h(z; w) ∈ C1(Z j∗(w)) ∩ C(R) solves (3) and (5). Given Zh∗(z), j(z; w) ∈
C1(Zh∗(w)) ∩ C(R) solves (4) and (6).

4. Given u(z), the continuation set of the firm, Z j∗(z), is (9) and that of the worker, Zh∗(z), is (10).

FIGURE 1. EQUILIBRIUM VALUES AND OPTIMAL POLICIES

Log Productivity

V
al

ue
s

h(z; w) j(z; w) u(z) 0

z−(w) z̃−(w)

Z j∗(w)

z̃+(w) z+(w)

Zh∗(w)

0 < ez − ew

0 < ew − ρu(z) + γ
∂u(z)

∂z + σ2

2
∂2u(z)

∂z2

h(z; w) > u(z) and j(z; w) > 0

Notes: The figure plots the value functions of workers (blue lines) and firms (red lines) for a given log wage w as a
function of log productivity z. Solid lines show the values in the match, which are h(z; w) for the worker and j(z; w)

for the firm. Dashed lines show the values outside of a match, which are u(z) for the worker and 0 for the firm.
The equilibrium continuation sets of the worker and the firm are Zh∗(w) = (−∞, z+(w)) and Z j∗(w) = (z−(w), ∞),
respectively. The worker has positive net flow payoff for any productivity level z < z̃+(w), where z̃+ satisfies 0 =

ew − ρu(z̃+) + γ∂u(z̃+)/∂z + (σ2/2)∂2u(z̃+)/∂z2. The firm makes strictly positive flow profits for any productivity
level z > z̃−(w) := w. Source: Model simulations.

Part 1 of Definition 1 requires unemployed workers’ search strategies to be optimal. Part

2 imposes free entry. The remaining parts describe agents’ best responses in two steps. Given

the other agent’s optimal continuation set, Part 3 describes the value function under the optimal

continuation policy. Given these value functions, Part 4 describes the optimal continuation sets.

Equilibrium Refinement. Our equilibrium definition incorporates an equilibrium refinement

based on weakly dominant strategies. For illustration, suppose time is discrete, a period lasts dt,

and the match will end in the following period with certainty. If continuation is optimal today in

expectation of match separation next period, which is the worst possible outcome from the next

period onward, then continuation must be optimal under any possible outcome from next period

onward. Table 1 lists the payoffs in the period game. Suppose that productivity z is such that flow

12



payoffs in the match exceed flow payoffs from the outside options for both the worker and the

firm—i.e., (ez − ew)dt > 0 and ew dt + Ez′ [e−ρ dtu(z′)|z] > u(z). Then, there are two equilibria: one

in which both agents choose to separate and one in which both players decide to continue. However,

the first equilibrium does not survive the iterated elimination of weakly dominated strategies since,

independent of what the other agent does, it is weakly better to continue. As dt → 0, we recover

the continuation sets in equations (9)–(10), which incorporate a restriction to weakly dominant

strategies in continuous time. That is, (ez − ew)dt > 0 and ew dt + Ez′ [e−ρ dtu(z′)|z] > u(z) imply

ez − ew > 0 and 0 < ew − ρu(z) + γ∂u(z)/∂z + (σ2/2)∂2u(z)/∂z2 as dt → 0.

TABLE 1. ILLUSTRATING THE EQUILIBRIUM REFINEMENT IN THE PERIOD GAME

Firm separates Firm continues
Worker separates (u(z), 0) (u(z), 0)
Worker continues (u(z), 0) (ew dt + Ez′ [e−ρ dtu(z′)|z], (ez − ew)dt)

Notes: This table shows the payoffs to the (worker, firm) in a discrete-time approximation of the game played between a
matched worker and firm under the assumption that the match separates in the following period.

Wage-Rigidity-Induced Job Separations. The flow benefit of a match, net of its opportunity cost,

is given by ez − (B̃ez + maxw f (θ(z; w))[h(z; w)− u(z)]) > 0, reflecting the positive social value of

a match. Motivated by the empirical observation that job separations depend on wage rigidity,

wages in our model are allocative in the sense that match duration depends on their level. For this

reason, bilaterally inefficient job separations occur whenever a match is endogenously dissolved by

either the worker or the firm given a positive match surplus. The lack of commitment is reflected

in the equilibrium definition: Endogenous separations are optimal at each point of the state space

for at least one of the agents. Importantly, inefficiencies on the job-separation margin also affect

job creation due to their effects on unemployed workers’ search decisions through h(z; w) and on

firms’ vacancy posting decisions through j(z; w). Thus, wage rigidity leads to bilaterally inefficient

job separations in the form of endogenous quits versus layoffs, in contrast to standard labor market

theories with flexible wages (e.g., Mortensen and Pissarides, 1994) in which the two events are

substantively identical since job separations occur if and only if match surplus is exhausted.

2.3 Equilibrium Characterization

With productivity shocks and rigid wages, both variables codetermine a worker-firm match. We

can show that the relevant state variable for both workers and firms is the log-wage-to-productivity

13



ratio, ŵ := w − z. Thus, we express agents’ values and policies as functions of the scalar ŵ instead

of the duplet (z; w). To simplify notation, we define the transformed drift γ̂ := γ + σ2 and the

transformed discount factor ρ̂ := ρ − γ − σ2/2. The following result characterizes the equilibrium.

Lemma 1. Suppose that the set (u(z), h(z; w), j(z; w), θ(z; w)) satisfies the equilibrium conditions (1)–(6),

given the continuation sets Zh∗(w) and Z j∗(w) defined in (9)–(10) and search policy w∗(z). Then,

(
Û , Ĵ(w − z) , Ŵ(w − z) , θ̂(w − z)

)
=

(
u(z)

ez ,
j(z; w)

ez ,
h(z; w)− u(z)

ez , θ(z; w)

)

equivalently characterizes the equilibrium if the following conditions are satisfied:

1. Given Ŵ(ŵ) and θ(ŵ), Û satisfies

ρ̂Û = B̃ + max
ŵ

f (θ̂(ŵ))Ŵ(ŵ), (11)

where the optimal choice of submarket for an unemployed worker to search in is ŵ∗ = w∗(z)− z.

2. Given Ĵ(ŵ), free entry is satisfied: min
{

K̃ − q(θ̂(ŵ)) Ĵ(ŵ) , θ̂(ŵ)
}
= 0.

3. Given Ẑh∗ := int
{

ŵ : Ŵ(ŵ) > 0 or eŵ > ρ̂Û
}

and Ẑ j∗ := int
{

ŵ : Ĵ(ŵ) > 0 or eŵ < 1
}

, the

transformed value functions Ŵ(ŵ) and Ĵ(ŵ) satisfy the variational inequalities

ρ̂Ŵ(ŵ) =


max

{
eŵ − ρ̂Û − γ̂Ŵ ′(ŵ) + σ2

2 Ŵ ′′(ŵ)− δŴ(ŵ) , 0
}

∀ŵ ∈ Ẑ j∗,

0 ∀ŵ ∈ (Ẑ j∗)c,
(12)

ρ̂ Ĵ(ŵ) =


max

{
1 − eŵ − γ̂ Ĵ′(ŵ) + σ2

2 Ĵ′′(ŵ)− δ Ĵ(ŵ) , 0
}

∀ŵ ∈ Ẑh∗,

0 ∀ŵ ∈ (Ẑh∗)c,
(13)

with Ŵ ∈ C1(Ẑ j∗) ∩ C(R) and Ĵ ∈ C1(Ẑh∗) ∩ C(R). Finally, the optimal stopping times are given

by τh∗ = inf{t ≥ 0 : ŵt ∈ (Ẑh∗)c, w0 = ŵ∗} and τ j∗ = inf{t ≥ 0 : ŵt ∈ (Ẑ j∗)c, w0 = ŵ∗}.

Proof. See Online Appendix A.1.

The equilibrium conditions in Lemma 1 are transformed versions of those of the original

problem stated above. Part 1 gives the value of unemployment under the optimal search strategy

in equation (11). Part 2 states the transformed free-entry condition. Part 3 describes a nontrivial

equilibrium, with equations (12)–(13) referencing agents’ optimal continuation regions such that
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workers’ wages are above the flow value of unemployment whenever eŵ > ρ̂Û and firms’ flow

profits are positive whenever eŵ < 1.

Next, we state a key result on equilibrium existence and uniqueness.

Proposition 1. There exists a unique BRE.

Proof. See Online Appendix A.2.

Although equilibrium existence and uniqueness are important properties of models of directed

search, in our context they do not follow from previous work. Standard arguments in discrete time

with only exogenous job separations involve Schauder’s fixed-point theorem (e.g., Menzio and Shi,

2010, 2011; Schaal, 2017), which critically relies on two conditions: continuity in the value functions

and continuity in the mapping between value functions that characterize the BRE. These standard

arguments no longer apply to the above-referenced models in discrete time after the inclusion of

endogenous separations, nor do they carry over to our continuous-time setup.

Instead, we leverage quasi-variational inequalities to prove the existence and uniqueness of

a nontrivial equilibrium in our model. The proof proceeds in three steps. In the first step, we

represent the equilibrium conditions (12)–(13) in terms of quasi-variational inequalities (Antman,

1983). In the second step, we use the results in Lions and Stampacchia (1967) to show the existence

of the agents’ best response functions and their associated value functions. In the third step,

we define a functional equation Q(·) that maps the worker’s value function to itself using both

agents’ best response functional equations. Thus, proving the existence of a unique nontrivial

Nash equilibrium becomes equivalent to finding a fixed point Ŵ∗ such that Q(Ŵ∗) = Ŵ∗. To

this end, we show that the operator Q(·) is monotonic, thus allowing us to establish the existence

of the fixed point by invoking the Birkhoff-Tartar theorem (Aubin, 2007), which applies under

relatively weak regularity conditions. Finally, we show that the operator Q(·) satisfies a type of

concavity property, which allows us to establish the uniqueness of the fixed point. This uniqueness

result is nontrivial given the complementarity in agents’ continuation decisions based on strategic

worker-firm interactions within a match. Importantly, our continuous-time setup also allows us to

leverage properties of the employed worker’s and the firm’s value functions—e.g., continuity with

respect to Û—which are necessary to find a unique equilibrium of this economy.

At an intuitive level, the result follows from two observations. First, taking the value of

unemployment as given, the firm chooses a layoff productivity threshold z−(w) and the worker

chooses a quit productivity threshold z+(w). If the firm decides to delay a layoff (i.e., a lower
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z−(w)), then the worker’s best response is also to delay a quit (i.e., higher z+(w)). But the response

is less than one-for-one, because the benefit from delaying separation materializes in the future. In

the extreme, as one agent commits to staying in the match, the other party still has an incentive

to separate in some future states. Thus, each agent’s best-response threshold is decreasing and

concave in the other agent’s threshold. Second, if the future value of unemployment is higher, then

workers will quit sooner (i.e., lower z+(w)) and the match value is lower. This in turn reduces

the current value of an unemployed worker. Thus, current and future unemployment values are

“strategic substitutes,” pushing toward the uniqueness of equilibrium.

Next, we characterize the properties of the BRE. We postulate that there exist optimal policies in

the form of piece rates ŵ− < ŵ∗ < ŵ+, where ŵ− is the worker’s optimal job-separation threshold,

ŵ∗ is the optimal search strategy at match formation, and ŵ+ is the firm’s optimal job-separation

threshold. We define the transformed surplus of the match as Ŝ(ŵ) := Ĵ(ŵ) + Ŵ(ŵ) and the

worker’s share of the transformed surplus as η(ŵ) := Ŵ(ŵ)/Ŝ(ŵ).

Proposition 2. The BRE has the following properties:

1. The joint match surplus satisfies

Ŝ(ŵ) = (1 − ρ̂Û)T (ŵ, ρ̂), (14)

where B̃ < ρ̂Û < 1 and the expected discounted match duration is given by

T (ŵ, ρ̂) := E

[ˆ τm∗

0
e−ρ̂t dt|ŵ0 = ŵ

]
. (15)

2. The competitive entry wage, ŵ∗ = arg maxŵ f (θ̂(ŵ))Ŵ(ŵ), exists and is unique. Moreover, it solves

ŵ∗ = arg max
ŵ

{
Ŵ(ŵ)α Ĵ(ŵ)1−α

}
= arg max

ŵ

{
η(ŵ)α(1 − η(ŵ))1−αT (ŵ, ρ̂)

}
, (16)

with the unique solution characterized by the following optimality condition:

η′(ŵ∗)
(

α

η(ŵ∗)
− 1 − α

1 − η(ŵ∗)

)
︸ ︷︷ ︸

share channel

= − T ′
ŵ(ŵ

∗, ρ̂)

T (ŵ∗, ρ̂)︸ ︷︷ ︸
surplus channel

. (17)
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3. The equilibrium job-finding rate f (θ̂(ŵ∗)) and the flow opportunity cost of employment ρ̂Û are

f (θ̂(ŵ∗)) =
[
(1 − η(ŵ∗))(1 − ρ̂Û)T (ŵ∗, ρ̂)/K̃

] 1−α
α , (18)

ρ̂Û = B̃ +
(

K̃α−1 (1 − η(ŵ∗))1−α η(ŵ∗)α
(
1 − ρ̂Û

)
T (ŵ∗, ρ̂)

) 1
α
. (19)

4. If γ ̸= 0 or σ ̸= 0, then each agent’s continuation set is connected and that of the game is bounded:

Ẑh∗ = (ŵ−, ∞) and Ẑ j∗ = (−∞, ŵ+), (20)

where −∞ < ŵ− ≤ log(ρ̂Û) < 0 ≤ ŵ+ < ∞. Workers’ and firms’ value functions satisfy the

following smooth pasting conditions: Ŵ ′(ŵ−) = Ĵ′(ŵ+) = 0.

Proof. See Online Appendix A.3.

Starting with Part 1 of Proposition 2, equation (14) states that the match surplus equals the

product of the transformed flow surplus 1 − ρ̂Û and the expected discounted match duration

T (ŵ, ρ̂) defined in equation (15), which depends on the wage ŵ and the width of the match’s

continuation set (ŵ−, ŵ+). Also, the flow opportunity cost of employment ρ̂Û is bounded between

1 (i.e., the transformed value of flow output in the match) and B̃ (i.e., the transformed value of

home production). Since 1 > ρ̂Û, the joint match surplus is always strictly positive, so that all

endogenous job separations are inefficient.

Equations (16)–(17) of Part 2 show that the optimal entry wage ŵ∗ balances a share channel and

a surplus channel. Unemployed workers search for wages that are competitively set as if they were a

Nash bargaining solution with worker weight α, thereby satisfying the Hosios (1990) condition.

This result derives from free entry, which implies that workers’ job-finding rate is proportional to

the firm’s value. A larger entry wage increases the worker’s surplus share by η′(ŵ∗)α/η(ŵ∗) but

reduces the job-finding probability by η′(ŵ∗)(1 − α)/(1 − η(ŵ∗)). This trade-off is reflected in the

share channel and standard in models of directed search (e.g., Shimer, 1996; Moen, 1997).

In addition, the novel surplus channel captures the dependence of expected match duration on

the wage set at match formation. The higher (lower) the entry wage, the sooner the firm (worker)

will dissolve the match in expectation. Only if T ′
ŵ(ŵ

∗, ρ̂) = 0, then the worker’s surplus share is

η(ŵ∗) = α, as in bilaterally efficient models. These considerations are unique to our environment.

Part 3 states workers’ job-finding rate (18) and the flow opportunity cost of employment (19) as

functions of the worker’s surplus share and the expected discounted match duration.
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Part 4 shows that the continuation set of the worker and that of the firm in (20) follow threshold

rules in the log-wage-to-productivity ratio ŵ. Workers do not quit as long as ŵ > ŵ−, while firms

refrain from firing the worker as long as ŵ < ŵ+. Thus, the continuation set for the match is given

by Ẑh∗ ∩ Ẑ j∗ = (ŵ−, ŵ+). These thresholds satisfy ŵ− ≤ log(ρ̂Û) and ŵ+ ≥ 0, reflecting both

parties’ willingness to accept flow payoffs below that from their respective outside option. Finally,

the smooth pasting conditions apply at the worker’s quit threshold ŵ− and at the firm’s firing

threshold ŵ+, reflecting the optimality of agents’ continuation thresholds.

Finally, it is worth highlighting that the optimal entry wage (see Part 2) will be set at an optimal

distance from both separation thresholds (see Part 4). To convey the intuition, consider a wage-to-

productivity ratio ŵ close to the quit threshold ŵ−. The worker’s and firm’s value functions are

increasing for ŵ sufficiently close to ŵ− since both values are zero when ŵ < ŵ− and positive when

ŵ > ŵ−.12 Therefore, around the quit threshold, raising wages is Pareto improving, as it results in

a higher flow payoff for the worker and at the same time a lower quit probability, which extends

the expected match duration and increases the firm’s value. Following a symmetric argument,

lowering wages is Pareto improving near the layoff threshold.

2.4 Understanding the Economic Mechanisms

Static Considerations. We first consider equilibrium policies under fixed productivity.

Proposition 3. If γ = σ = 0, then optimal policies are given by

(ŵ− , ŵ∗ , ŵ+) = log(ρ̂Û , α + (1 − α)ρ̂Û , 1),

with η(ŵ∗) = α and T (ŵ∗, ρ̂) = 1/(ρ̂ + δ), and no smooth pasting conditions apply.

Proof. See Online Appendix A.4.

Note that ŵ− < ŵ∗ < ŵ+ and ŵ = ŵ∗ for the match duration, so there are no endogenous job

separations absent productivity fluctuations. From this, we see that lack of commitment and wage

rigidity by themselves do not generate inefficient job separations. Absent idiosyncratic productivity

fluctuations, agents’ behavior is bilaterally efficient, in that it maximizes the joint match surplus.

In addition to the static forces outlined above, two dynamic considerations guide workers’ and

firms’ choices: the option value effect and the anticipatory effect.

12Supplementary Material I.3 graphically illustrates workers’ and firms’ value functions over ŵ.
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Dynamic Consideration I: The Option Value Effect. To understand the option value due to

productivity fluctuations, we temporarily abstract from the drift in worker productivity.

Proposition 4. If γ̂ = 0 and α = 1/2, then, to a first-order approximation of flow payoffs around the

entry wage, ŵ∗ = log
(
(1 + ρ̂Û)/2

)
and job-separation thresholds satisfy ŵ± = ŵ∗ ± h(φ, Φ) for some

function h(φ, Φ) with φ :=
√

2(ρ̂ + δ)/σ and Φ := (1 − ρ̂Û)/(1 + ρ̂Û). The following properties hold:

1. h(φ, Φ) is decreasing in φ and increasing in Φ.

2. limφ→0 h(φ, Φ) = 3Φ and limφ→∞ h(φ, Φ) = Φ.

3. φh(φ, Φ) is increasing in φ.

The equilibrium surplus share is η(ŵ∗) = α = 1/2 and the expected discounted match duration,

T (ŵ∗, ρ̂) =
1 − 2

(
eφh(φ,Φ) + e−φh(φ,Φ)

)−1

ρ̂ + δ
, (21)

is increasing in φ and Φ and satisfies T ′
ŵ(ŵ

∗, ρ̂) = 0.

Proof. See Online Appendix A.4.

Proposition 4 demonstrates that idiosyncratic volatility, by itself, does not affect the split of the

match surplus between the worker and the firm. Such an economy is symmetric around the entry

wage, which implies T ′
ŵ(ŵ

∗, ρ) = 0 and η(ŵ∗) = α. Thus, a larger ŵ∗ reduces the match duration

by increasing the likelihood of a layoff but increases the match duration by reducing the likelihood

of a quit. Weighing both forces, T (·, ρ) is maximized at ŵ∗ = (1 + ρ̂Û)/2 and η(ŵ∗) = 1/2.

This result provides a tight characterization of the worker’s and the firm’s optimal policy

functions, which yield the continuation region of the match (ŵ−, ŵ+) being symmetrically centered

around the optimal entry wage ŵ∗. Second, the width of the continuation region is increasing in

volatility σ and decreasing in ρ̂Û (Part 1). The width of the inaction region increases with σ due

to the option value effect: Though the worker’s productivity might fall below the wage, the firm

is willing to wait before firing the worker because productivity may increase in the future. The

width of the inaction region decreases with ρ̂Û, a higher value of which decreases match surplus

and makes it more costly to wait.

The option value effect naturally arises in models of inaction. However, our model features

a departure from canonical models of inaction in product pricing and investment (e.g., Barro,
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1972; Bernanke, 1983). In those models, the width of the continuation region typically grows

unboundedly with the volatility σ. Instead, in our model, the width of the continuation region has

an upper bound (Part 2). To see the intuition behind this result, consider the problem of a firm

that finds itself in a match with negative flow profits—the worker case is exactly analogous. The

marginal benefit from remaining in a currently unprofitable match is that, with some probability

in the future, productivity increases enough to make the match profitable by rendering the wage-

to-productivity ratio less than unity. At the same time, inaction on the part of the firm is risky:

Productivity may increase by a large enough amount for the worker to choose to quit. Given the

two job-separation thresholds, as volatility approaches infinity, the probability of remaining in the

profitable part of the inaction region approaches zero. Thus, the two-sided lack of commitment

imposes an upper bound on the option value associated with remaining in a match.

The inefficiency due to the lack of commitment also manifests itself in the expected duration of

the match in (21). Since the separation thresholds, indexed by h(φ, Φ), remain bounded as σ → ∞,

the expected match duration decreases as the volatility of productivity shocks increases (Part 3).

Dynamic Consideration II: The Anticipatory Effect. To understand the anticipatory effect due to

the productivity drift, we temporarily abstract from volatility in worker productivity (i.e., σ = 0)

and focus on the case with weakly positive drift (i.e., γ̂ ≥ 0), with other cases being analogous.

Proposition 5. If σ = 0 and γ̂ ≥ 0, then the quit threshold is ŵ− = log
(
ρ̂Û
)

and

w∗ = ŵ− + T̃
(

α + (1 − α)ρ̂Û
ρ̂Û

,
ρ̂ + δ

γ̂
,
(1 − α)(1 − ρ̂Û)

ρ̂Û

)
,

where T̃(·), defined in equation (A.32) of Online Appendix A.4, is increasing in its first argument and

decreasing in its second argument. Moreover:

1. As γ̂ → 0, then
(
T̃(·) , T (ŵ∗, ρ̂) , η(ŵ∗)

)
→
(

log
(

α+(1−α)ρ̂Û
ρ̂Û

)
, 1

ρ̂+δ , α
)

.

2. As γ̂ → ∞, then
(
T̃(·) , T (ŵ∗, ρ̂) , η(ŵ∗)

)
→
(
T̃limit , 0 , ηlimit) , where T̃limit and ηlimit satisfy

α + (1 − α)ρ̂Û
ρ̂Û

=
eT̃limit − 1 − (1−α)(1−ρ̂Û)

ρ̂Û

(
1 − T̃limit

eT̃limit−1

)
T̃limit

,

ηlimit = α +
1 − α

T̃limit

(1 − ρ̂Û)ηlimit

ηlimit + ρ̂Û(1 − ηlimit)
. (22)

Proof. See Online Appendix A.4.
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When productivity grows at a constant rate, the job-separation threshold ŵ− equals the static

opportunity cost of employment since workers benefit from remaining matched up to that point

and workers have no incentive to delay separation beyond that point. The fact that ŵ− is insensitive

to the drift differs from the canonical result in Sheshinski and Weiss (1977) who studied the problem

of a firm setting prices subject to menu costs with positive trend inflation. Their main result is that,

in order to economize on menu costs associated with price changes, firms both decrease the lower

threshold of the inaction region for real prices and increase the nominal reset price in response

to higher trend inflation. Here, the quit threshold ŵ− is independent of the drift due to limited

commitment—the worker cannot credibly promise to remain in the match. From Proposition 5,

the entry wage ŵ∗ is increasing in both the weighted sum of opportunity costs (α + (1 − α)ρ̂Û)

and the drift (γ̂). We refer to the latter as the anticipatory effect: Workers anticipate higher future

productivity and modify their search strategy accordingly. The following two cases illustrate this

point by exploring two limiting behaviors of the anticipatory effect.

As γ̂ → 0 (Part 1), the equilibrium entry wage ŵ∗ is the same as in the case without drift; thus,

η(ŵ∗) = α. As the drift increases, workers optimally search for a job with a higher entry wage.

Therefore, the average wage in the economy increases above the weighted sum of opportunity

costs; recall that ŵ− remains fixed. This results from the worker internalizing the trade-off whereby

a higher wage implies (i) a reduced job-finding rate and (ii) a lower frequency of inefficient job

separations and, thus, a longer expected match duration. As γ̂ → ∞ (Part 2), the entry wage w∗

becomes unresponsive to the drift because the job-finding rate becomes so small that it dominates

the trade-off. Thus, the effect of the drift on the entry wage is bounded, in contrast to the reset

price in Sheshinski and Weiss (1977). Finally, as seen in (22), the anticipatory effect gives workers a

higher surplus share when γ̂ → ∞ compared to γ̂ → 0.

Workers’ lack of commitment gives them the option to quit, which implies the invariance of ŵ−

to γ̂ and a decreased value of searching for a job. To see this, suppose a worker commits to some

ŵ− as δ → 0. Then, the worker chooses a single instrument, namely the entry wage w∗ to balance

two objectives. On one hand, the worker chooses w∗ to steer the rate of inefficient separations,

which occur at a tenure of (w∗ − ŵ−)/γ̂, as captured by the surplus channel. On the other hand,

the worker chooses w∗ close to the weighted sum of opportunity costs, as captured by the share

channel. Since these objectives are conflicting, lack of commitment distorts both the expected match

duration and job-finding rates in equilibrium.
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2.5 Discussion of Model Assumptions

For expositional clarity, we imposed certain assumptions that could be relaxed in our theory: (i)

homotheticity of the home production technology and vacancy costs; (ii) no on-the-job search; (iii)

time dependence of wage setting; and (iv) only worker heterogeneity.

Regarding (i), shocks to worker productivity Zt affect agents’ choices through the relative flow

value of employment (Wt/Zt), home production (B̃Zt), and vacancy costs (K̃Zt). In order to focus

on the novel first margin, we abstract from the other two by assuming that home production and

vacancy costs are homothetic in worker productivity. This assumption implies that all workers face

the same job-finding rate and entry wage per efficiency unit and also rules out efficient endogenous

job separations. It is straightforward to relax these homotheticity assumptions for quantitative

work, as is done in Afrouzi et al. (2024).

Regarding (ii), workers can reset their wages by undergoing a costly unemployment spell.

Similarly, in models with costly on-the-job search (Christensen et al., 2005; Hornstein et al., 2011),

workers’ inaction region would widen due to the option value of receiving job offers while em-

ployed, which would substitute a subset of quits for job-to-job transitions, but inefficient separations

into unemployment would still occur for the same reasons we highlight. However, a fully specified

model of on-the-job search under wage rigidity would need to take a stance on additional model

details such as the wage renegotiation protocol.

Regarding (iii), time-dependent wage setting à la Calvo (1983) is a common way of modeling

wage rigidity in many macroeconomic applications (e.g., Erceg et al., 2000) and a tractable stand-in

for the myriad reasons behind wage rigidity discussed in Bewley (1999).13 Wages have been

empirically documented to be set in staggered contracts that reset at certain time intervals by

Le Bihan et al. (2012). While necessarily parsimonious, our choice of the wage setting protocol

is motivated by these empirical regularities. Blanco et al. (2025) take a step in the direction of a

state-dependent model of wage changes within the job.

Finally, regarding (iv), we abstract from firm and match productivity shocks. This simplification

is motivated by empirical evidence suggesting that worker heterogeneity explains the largest share

of wage dynamics (Guiso et al., 2005; Engbom et al., 2023; Friedrich et al., 2025). Additionally, a

benefit of focusing on worker heterogeneity is that it allows our model to parsimoniously speak

to both worker quits and firm layoffs—both of which are empirically salient (Graves et al., 2024).

13Hall (2005) notes that the reasons for wage rigidity in Bewley (1999) “focus on the avoidance of downward wage
adjustments, but many of their ideas point toward the absence of immediate upward wage adjustments as well.”
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Conversely, a model with only firm- or match-specific heterogeneity would predict no worker quits

because workers’ flow value of employment and flow value of nonemployment would both be

constant within a wage segment, even in the presence of staggered renegotiations. Adding other

sources of heterogeneity would require different data (e.g., linked employer-employee records),

different model ingredients (e.g., a multi-worker firm wage-setting protocol), and a different

identification strategy (e.g., exploiting synchrony in coworker outcomes).

While our choice of model assumptions opens up the door for important extensions, we view

those as natural second steps as we lay the groundwork for such future work.

3 Aggregate Shocks with Wage-Rigidity-Induced Job Separations

How do wage-rigidity-induced job separations affect the transmission of aggregate shocks in the

labor market? To answer this question, we extend our model to include shocks to total factor

productivity and the price level.

3.1 An Economy with Aggregate Shocks

To characterize the labor market response to a broad set of aggregate shocks, we modify the baseline

model by introducing shocks to economy-wide TFPR, defined as TFPRt := AtPt, where At denotes

aggregate productivity and Pt denotes the aggregate price level. We assume that the logarithm of

TFPR follows a Brownian motion with drift χ and volatility ζ:

dlog TFPRt = χ dt + ζ dWTFP
t ,

where WTFP
t is a Wiener process. Studying shocks to TFPR has two benefits. On one hand, it allows

us to study shocks to aggregate productivity, which are the predominant source of exogenous

fluctuations studied in the quantitative macro-labor literature (Shimer, 2005a; Hall, 2005). On

the other hand, it allows us to study shocks to the aggregate price level, which is endogenously

determined in a monetary economy. We provide two alternative microfoundations for the aggregate

price level when monetary policy is conducted either via money supply or an interest rate-based

Taylor rule.14 In both models, monetary policy moves the aggregate price level Pt and thus TFPRt.15

14For details, see Supplementary Material II.1 and Supplementary Material II.2, respectively.
15By studying the labor market effects of monetary policy through the aggregate price level, we abstract from other

important monetary policy channels (e.g., Hall, 2017).
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We assume that the vacancy posting cost K̃Zt and the value of home production B̃Zt are linear

in TFPR. This assumption arises naturally when the TFPR shock is due to price movements as

long as K̃Zt and B̃Zt are denominated in real terms. Under the interpretation of the TFPR shock

being driven by productivity, this assumption can be justified by appealing to recruiting expenses

incurred in the process of workers operating a recruiting technology (Shimer, 2010).

The introduction of aggregate shocks requires minor adjustments to our framework. Aggregate

shocks do not change the analysis, beyond altering the stochastic process for productivity and

introducing dynamics in the aggregate state. Given fluctuations in TFPR, the relevant state variable

becomes the real wage-to-productivity ratio ŵ := w − z − log TFPR, which equals the worker’s nomi-

nal wage w minus worker productivity z + log TFPR. All policies (ŵ+, ŵ∗, ŵ−) are then expressed in

TFPR-adjusted terms. In addition, it will be useful to keep track of the negative of the cumulative

shocks to z + log TFPR since the beginning of a spell of employment or unemployment, denoted

∆z := ŵ − ŵ∗, which evolves as

d∆z = − (γ + χ)dt + σ dW z
t + ζ dWTFP

t .

Let Gh(∆z) and gh(∆z) denote the cumulative distribution function (CDF) and probability

density function (PDF), respectively, of cumulative worker productivity shocks within a spell in

steady state. This distribution’s support is given by [−∆−, ∆+], where ∆− := ŵ∗ − ŵ− and ∆+ :=

ŵ+ − ŵ∗. For any k ∈ N, we define this distribution’s kth moment as Eh(∆zk) :=
´

∆z ∆zk dGh(∆z).

The steady state of our model implies a set of observable statistics: the rate of transitions from

employment to unemployment, s, and that from unemployment to employment, f (θ̂(ŵ∗)), total

employment, E , and changes in the log nominal wage between consecutive job spells, ∆w.16

3.2 Sufficient Statistics

Starting from the steady state without aggregate shocks, we consider a small, unanticipated shock

ζ > 0 to TFPR at time t = 0, so that log(TFPR0) = limt↑0 log(TFPRt) + ζ. We are interested in the

economy’s CIR of aggregate employment and TFPR-adjusted wages to such an aggregate shock.17

16While worker wages and productivities do not have a stationary distribution in levels, the distribution of wage
changes across jobs is stationary. Although not necessary for our purposes, the former could be rendered stationary by
assuming, for example, that workers permanently leave the labor force at a constant hazard rate.

17By the certainty equivalence principle, the IRF following an aggregate shock from the steady state with steady-state
policies is equivalent to the solution based on a first-order perturbation of the model with business cycle fluctuations.
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An Illustration. Figure 2 shows the evolution of key variables after an unanticipated one-off

increase in TFPR—i.e., the price level or productivity. The distribution of real wage-to-productivity

ratios ŵ shifts to the left (Panel A), resulting in lower TFPR-adjusted wages per capita wt :=´ 1
0 1[Eit = h]wit di (Panel B), movements in the job-separation rate st (Panel C), the shares of quits

and layoffs (Panel D), the job-finding rate ft (Panel E), and aggregate employment Et (Panel F).

FIGURE 2. IMPULSE RESPONSE FUNCTIONS OF LABOR MARKET VARIABLES

A. Distribution of ŵ

steady state after ζ-shock

ŵ− ŵ+

0

Time

B. TFPR-adjusted wages per capita, w̄t − w̄ss

Sticky Entry Wage

Flexible Entry Wage

0

Time

C. Separation rate, st − sss

0

Time

D. Share of quits and layoffs

Quits

Layoffs

0

Time

E. Job-finding rate, ft − fss

0

Time

F. Aggregate employment, Et − Ess

0

1

Notes: Panel A shows the distribution of real wage-to-productivity ratios ŵ := wit − zit − log TFPRt in steady state
and after a TFPR shock of size ζ. Panels B–F show the IRFs of the average log TFPR-adjusted per-capita wage wt, the
job-separation rate st, the shares of quits and layoffs, the job-finding rate ft, and aggregate employment Et, respectively.
Source: Model simulations.

While employed workers’ wages are rigid, we allow for two polar cases guiding the wages of

new matches, which are commonly considered a key determinant of the job-finding rate (Pissarides,

2009). In the first case of flexible entry wages, we assume that unemployed workers adjust their

search behavior to the new TFPR level, so ŵ∗ remains at its steady-state level. Consequently, firms’

TFPR-adjusted value of hiring is unaffected, so job-filling and job-finding rates remain unchanged

(dashed line in Panel E). The only effect of the TFPR shock is to shift ŵ in the inaction region, which
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affects the time path of endogenous job separations in the form of quits and layoffs (Panel D). Thus,

employment dynamics under flexible entry wages are driven only by job-separation rates.

In the second case of sticky entry wages, we assume that unemployed workers are unaware of

the shock realization at t = 0 and learn about it only after becoming employed. Given this lack of

information, unemployed workers do not adjust their search behavior to the higher TFPR and keep

searching for jobs that pay the old steady-state nominal wage-to-productivity ratio, which is ŵ∗ − ζ

in real terms. Once they find a job, workers’ search strategies incorporate their knowledge about the

shock and search for jobs that pay the steady-state real wage ŵ∗. Since firms know about the shock

realization, the job-finding rate is affected by the free-entry condition. Consequently, temporarily

lower entry wages induce firms to post more vacancies and the job-finding rate increases (solid

line in Panel E). In summary, employment dynamics under sticky entry wages are driven by both

job-separation and job-finding rates.

The case of sticky entry wages is motivated by the empirical evidence that new-hire wages

evolve similarly to incumbent workers within a firm at business cycle frequencies (Grigsby et al.,

2021) and that wages for new hires rarely change between successive vacancies at the same job

(Hazell and Taska, 2022). It is possible to think of various alternative microfoundations for this

assumption, and we choose not to rely on a single one.18

Impulse Responses. Our goal is to characterize the effects of a TFPR shock on aggregate employ-

ment E . To this end, we define IRFx(ζ, t) := xt − xss as the value of variable x at time t relative to

its steady-state value xss, following an unanticipated one-off TFPR shock ζ at time 0. Following

Alvarez et al. (2016a), we define the CIR of variable x to a TFPR shock ζ as

CIRx(ζ) =

ˆ ∞

0
IRFx(ζ, t)dt,

which is simply the area under the IRF for all t > 0. The CIR summarizes in a single scalar the

full path—i.e., the on-impact response and dynamics—of the labor market response to the TFPR

shock. Therefore, the CIR can be interpreted as a TFPR multiplier. To illustrate the logic behind the

CIR, suppose that there are no nominal rigidities so that the nominal wages of both newly hired

and incumbent workers respond one-for-one to the shock. In this case, IRFx(ζ, t) = 0 for all t and

18Since the entry wage is constrained efficient, perturbations around the steady state have second-order welfare effects.
Thus, the assumption of rigid entry wages could be replaced by an adjustment cost of changes in entry wages due to
imperfect information about aggregate shocks, as in models of sticky information (Alvarez et al., 2022). For notable
models of rigid entry wages, see Fukui (2025) and the discussion in Shimer (2004) and Rogerson and Shimer (2011).
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thus CIRx(ζ) = 0 for x ∈ {E , w}, which reflects the fact that given our assumptions there are no

consequences of TFPR shocks. With nominal rigidities, a TFPR shock affects both employment and

wages, the magnitude of which is given by the CIR.

Next, we relate the economy’s CIR to conventional labor market microdata. A key insight is

that the CIR can be characterized only in terms of cross-sectional steady-state moments. Intuitively,

changes in a worker’s idiosyncratic productivity and changes in TFPR symmetrically affect the

log-real-wage-to-productivity ratio Wit/(ZitTFPRt), so the response of a match to idiosyncratic

worker productivity changes in steady state can inform the aggregate effects of shocks to TFPR.

For ease of exposition, we assume γ + χ = 0 for the remainder of the main text. At the end of

this section, we discuss the general case.

CIR of Employment with Flexible Entry Wages. To facilitate the exposition, we first present the

case with flexible entry wages. Proposition 6 characterizes the CIR up to a first order.19

Proposition 6. Up to first order, the CIR of employment under flexible entry wages is

CIRE (ζ)
ζ

= −(1 − Ess)
Eh[∆z]

σ2 + o(ζ) (23)

=
1

f (θ̂(ŵ∗))︸ ︷︷ ︸
avg. u. dur.

× 1
Std[∆w]︸ ︷︷ ︸

precision

× 1
3

Skew [∆w]︸ ︷︷ ︸
asymmetry

+o(ζ). (24)

Proof. See Online Appendix B.1.

Let us begin by inspecting the result in equation (23) of Proposition 6, which expresses the CIR

in terms of model objects. To build intuition, we consider two cases in which aggregate employment

has a zero response to a TFPR shock. In the first case, all job separations are exogenous, so the

IRF of the job-separation rate identically equals zero. In the second case, all job separations are

endogenous, but the mass of workers quitting exactly equals the mass of workers saved from layoffs

along the entire IRF. In both cases, equation (23) features Eh[∆z] = 0. As a third case, consider

an economy with Eh[∆z] < 0. Such an economy features a larger share of layoffs than quits, so a

shock-induced reduction in TFPR-adjusted wages reduces the separation rate and increases total

employment. Finally, the CIR is scaled by the steady-state unemployment rate, 1 − Ess, which is

informative of the steady-state job-finding rate f (θ̂(ŵ∗)) and thus the speed of (re-)matching.

19That is, CIRx(ζ) = CIRx(0) + (CIRx)′(0)ζ + o(ζ2), where CIRx(0) = 0.
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To operationalize this result, we would like to express the terms in equation (23) in terms of

observable moments of the data. To this end, we exploit the insight that the cumulative shocks

in employment, ∆z, can be inferred from data on workers’ employment outcomes across jobs, as

we spell out in Section 3.3. Equipped with this auxiliary result, we are able to derive equation

(24), which expresses the CIR in terms of a sufficient statistic that depends only on the observed

distributions of wage changes across jobs and unemployment duration. This sufficient statistic is

composed of three terms: (i) the average unemployment duration, 1/ f (θ̂(ŵ∗)); (ii) the precision

of wage changes, 1/Std[∆w]; and (iii) the asymmetry of the wage change distribution, (1/3)×
Skew[∆w]. Note that these moments summarize the entire distribution of workers over the inaction

band, not just the mass of workers at the separation thresholds. Each of the three terms in the CIR

plays an intuitive role. First, the steady-state unemployment rate scales the aggregate employment

response. Second, a larger dispersion of wage changes indicates a wider inaction region or matches

that are more resilient to shocks, which is inversely related to the share of endogenous separations

and responsiveness of aggregate employment to a given impulse. Third, the asymmetry measure

reflects the relative distances of the separation thresholds ŵ− and ŵ+ from the entry wage ŵ∗ and

thus the relative incidence of quits versus layoffs. For example, consider a distribution of nominal

wage changes that is positively skewed—i.e., featuring a large mass of workers who experience

small wage cuts due to a relatively high layoff risk. In this example, a positive shock to TFPR

reduces the relative cost of wages, leading firms to reduce layoffs and thereby increasing aggregate

employment.

Proposition 6 also shed new light on the conventional wisdom whereby fluctuations in the

job separation rate are not the primary driver of aggregate employment dynamics (e.g., Shimer,

2005a). Equation (23) points to conditions under which aggregate employment fluctuations due to

endogenous job separations following a TFPR shock can be small or large.20 Moreover, it allows

us to verify those conditions in the data. Given the conventional wisdom, one might be tempted

to conclude that wage rigidity cannot lead to significant inefficiencies at the micro and macro

level. However, equation (23) shows that the CIR of aggregate employment can be small despite

the presence of inefficient separations at the micro level. Thus, time-series data on aggregate job

separations cannot be used to assess the incidence of inefficient turnover. Instead, in order to do so,

labor market microdata is needed.
20For example, the rate of inefficient job separations is more responsive to TFPR shocks for larger TFPR trends χ.

Alternatively, following a sequence of negative productivity shocks, an inflationary shock reduces the incidence of
layoffs, in line with recent evidence by Blanco et al. (2024).
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CIR of Employment with Sticky Entry Wages. Having characterized the aggregate employment

response under flexible entry wages, Proposition 7 describes the case of sticky entry wages.

Proposition 7. Up to first order, the CIR of employment under sticky entry wages is

CIRE (ζ)
ζ

= −(1 − Ess)

[
Eh[∆z]

σ2 − 1
f (θ̂(ŵ∗)) + s

[
1 − α

α

[
η′(ŵ∗)

(1 − η(ŵ∗))
− T ′

ŵ(ŵ
∗, ρ̂)

T (ŵ∗, ρ̂)

]
︸ ︷︷ ︸

job-finding effect

− T ′
ŵ(ŵ

∗, 0)
T (ŵ∗, 0)︸ ︷︷ ︸
new-hires’
separation

effect

]]
+ o(ζ)

(25)

= −(1 − Ess)

[
Eh[∆z]

σ2 − 1
f (θ̂(ŵ∗)) + s

[
η′(ŵ∗)
η(ŵ∗)

+
T ′

ŵ(ŵ
∗, ρ̂)

T (ŵ∗, ρ̂)
− T ′

ŵ(ŵ
∗, 0)

T (ŵ∗, 0)

]]
+ o(ζ). (26)

Proof. See Online Appendix B.2.

Focusing first on equation (25) of Proposition 7, the first term in brackets reflects the same

forces at play in the CIR under flexible entry wages. The remaining terms in brackets capture two

new mechanisms at play when entry wages are sticky. First, the job-finding effect captures the fact

that lower TFPR-adjusted entry wages increase the firm’s surplus share (i.e., η′(ŵ∗)/(1 − η(ŵ∗)))

but also changes the expected match duration (i.e., T ′
ŵ(ŵ

∗, ρ̂)/ T (ŵ∗, ρ̂)) and the match surplus,

both of which shape firms’ incentives to post vacancies. Second, the new hires’ separation effect

captures the fact that lower TFPR-adjusted entry wages directly affect the separation rate of initially

unemployed workers (i.e., T ′
ŵ(ŵ

∗, 0)/ T (ŵ∗, 0)).

Next, we move to equation (26), which comes from combining (25) with the optimality condition

for ŵ∗ in (17). This step’s goal is to take advantage of the fact that workers internalize the effect of

entry wages on net job creation. To shed light on the two key elasticities appearing in equation

(26), we first show that T ′
ŵ(ŵ

∗, ρ̂)/T (ŵ∗, ρ̂)−T ′
ŵ(ŵ

∗, 0)/T (ŵ∗, 0) ≈ 0. While this property trivially

holds when ρ̂ ↓ 0, the following lemma shows that the elasticity of the expected match duration to

the entry wage is independent of the discount factor ρ̂ up to second order.

Lemma 2. Up to a second-order approximation of the match duration T (ŵ, ρ̂) around ŵ = ŵ∗ and for all

ρ̂, we have T ′
ŵ(ŵ

∗, ρ̂)/T (ŵ∗, ρ̂) = (∆+ − ∆−)/(∆+∆−).

Proof. See Online Appendix B.3.

Lemma 2 shows that the elasticity of match duration is a function of the quit and layoff

thresholds expressed in terms of cumulative shocks to worker productivity, ∆− and ∆+. Thus,

the key sufficient statistic for the effect of lower entry wages on job creation in equation (26)

29



is η′(ŵ∗)/η(ŵ∗). From this, one may be inclined to conclude that the prevalence of inefficient

separations cannot be an important determinant of aggregate job creation. However, we find that

this is not generally the case. The following result shows this by characterizing the elasticity of the

worker’s share to changes in the entry wage.

Proposition 8. The rent-sharing elasticity η′(ŵ∗)/η(ŵ∗) satisfies the following properties:

1. If ∆−, ∆+ → ∞, then
η′(ŵ∗)
η(ŵ∗)

=
α + (1 − α)ρ̂Û

α(1 − ρ̂Û)
. (27)

2. If ∆− = ∆+ and ∆+ is small enough, then

η′(ŵ∗)
η(ŵ∗)

=

√
send

2ασ
. (28)

Proof. See Online Appendix B.4.

Proposition 8 characterizes the rent-sharing elasticity η′(ŵ∗)/η(ŵ∗) under two polar cases,

namely as the inaction region grows infinitely wide (Part 1) and for a symmetric and narrow

enough inaction region (Part 2). The two results are best explained with the aid of Figure 3, which

we construct in two steps. First, we set δ = 0 and calibrate the model to match the U.S. economy’s

job-finding rate f and separation rate s with a replacement ratio B̃ of 0.29. We purposely choose α

so that ∆+ = ∆− and thus T ′
ŵ(ŵ

∗, ρ̂) = 0. Second, for different levels of the exogenous separation

rate δ, we find the productivity volatility σ as a function of δ that keeps the total separation rate

constant. The objective of this exercise is to vary the fraction of endogenous job separations send/s

from 0 to 100 percent while keeping the opportunity cost ρ̂Û and the total separation rate fixed by

construction. Panel A of the figure shows combinations of δ and σ that constitute the “iso-separation

rate curve” defined by s(δ, σ) = s, while Panel B plots the rent-sharing elasticity η′(ŵ∗)/η(ŵ∗) as a

function of the share of endogenous job separations send/s.

Consider the limiting case as δ → s (i.e., send/s → 0), so that all separations are exogenous, as

in Part 1 of Proposition 8. Then, a marginal increase in the entry wage increases workers’ surplus

share according to equation (27), reflecting the well-known result that, absent inefficient turnover,

the rent-sharing elasticity is inversely proportional to the flow surplus 1 − ρ̂Û (Shimer, 2005a). As

the share of inefficient separations (i.e., send/s) increases in Panel B of Figure 3, the rent-sharing

elasticity (black solid line) decreases due to a novel mechanism in our framework with sticky entry

wages. A higher entry wage increases the layoff probability and decreases the quit probability. By
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FIGURE 3. ISO-SEPARATION RATE CURVE AND THE ELASTICITY OF RENT SHARING
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Notes: Panel A shows the iso-separation rate curve defined by s(δ, σ) = s. Panel B shows the rent-sharing elasticity
as a function of the share of endogenous separations (black solid line) and compares it to an approximation of the
rent-sharing elasticity given by

√
send/(2ασ) based on equation (28). Note that the productivity volatility σ is a

function of δ derived from the iso-separation rate curve. The parameter values for δ = 0 are (γ + χ, σ, ρ, α, K̃, δ, B̃) =
(0, 0.0235, 0.0048, 0.452, 1.87, 0, 0.29). The steady-state targets for this calibration are ( f (θ(ŵ∗)), s) = (0.55, 0.034) with
∆+ = ∆−. Source: Model simulations.

construction, the expected duration of the match does not change, so match surplus is constant.

As workers make optimal quit decisions, a marginally lower quit probability leaves their value

unchanged due to an envelope condition (i.e., Ŵ ′(ŵ−) = 0). But a marginal increase in the layoff

probability reduces the worker’s value, since the firm makes layoff decisions. Therefore, the rent-

sharing elasticity decreases in the share of endogenous job separations, which the following section

shows how to measure using conventional labor market microdata.

3.3 Mapping the Model’s Unobservables to Observables

The previous section outlined a model that characterized the state of the labor market as a dis-

tribution of worker-firm matches across an inaction region. To operationalize this theory and

use it to describe aggregate fluctuations in terms of measurable sufficient statistics, we map the

model’s unobservables (i.e., the dynamics of the state variable) into observables (i.e., moments

of the distribution of wage changes across jobs). We proceed in two steps. First, we cast the

unobserved distribution of cumulative productivity changes in terms of the observed distribution

of wage changes between jobs. Second, we link the distribution of cumulative productivity changes

with the prevalence of inefficient job separations. For simplicity, here we focus on the case with

γ + χ = 0, while Online Appendix B.5 presents the general case.

Intuitively, how are observed wage changes between jobs informative about the prevalence

of inefficient job separations? Figure 4 illustrates their distribution, lw(∆w) (Panel A), and that of

cumulative productivity shocks in employment, gh(∆z) (Panel B), for each of two extreme cases.
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FIGURE 4. DISTRIBUTIONS OF WAGE CHANGES AND CUMULATIVE SHOCKS
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A. Wage changes between jobs, ∆w
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0
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B. Cumulative productivity shocks in employment, ∆z

0

Notes: The figure plots the distribution of wage changes between jobs lw(∆w) and the distribution of cumula-
tive productivity shocks in employment gh(∆z) for two calibrations. In the first calibration, we set (∆−, ∆+, γ +

χ, σ, δ, f (θ(ŵ∗))) = (0.05, 0.05, 0, 0.02, 0, 0.5) so that send/s ≈ 1 (blue solid line). In the second calibration, we set
(∆−, ∆+, γ + χ, σ, δ, f (θ(ŵ∗))) = (0.2, 0.2, 0, 0.1, 0.04, 0.5) so that send/s ≈ 0 (red dashed line). Source: Model simulations.

In the first case, when most job separations are endogenous (solid blue line), then most separated

workers experienced cumulative productivity shocks in employment of either −∆− or ∆+. As a

result, the distribution of wage changes of laid-off workers is concentrated around −∆−, while

that of workers who quit is concentrated around ∆+. This results in a bimodal distribution of

wage changes between jobs, with dispersion around the two modes caused by productivity shocks

during unemployment.

In the second case, when most job separations are exogenous (dashed red line), then most

separated workers experienced cumulative productivity shocks in employment close to zero—i.e.,

away from the two endogenous separation thresholds. With a constant job-finding probability

during unemployment, the distribution of wage changes between jobs mimics the distribution of

cumulative productivity shocks in employment, which is symmetric and single peaked at zero.

More generally, we provide equilibrium conditions characterizing the steady-state distributions

of cumulative productivity shocks gh(∆z) and gu(∆z) in Online Appendix B.6. The following result

shows how to recover the distribution of cumulative productivity shocks in employment, gh(∆z).

Proposition 9. Given the volatility of workers’ productivity shocks,

σ2 =
Var[∆w]

1/ f (θ̂(ŵ∗)) + 1/s
, (29)
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the distribution of workers’ cumulative productivity shocks satisfies

gh(∆z) = sE
[ˆ ∆z

−∆−

2(∆z − y)
σ2 gh(y)dy + Gh

(−∆−)
2(∆z + ∆−)

σ2

]
, (30)

where

Gh
(∆z) =

σ2

2 f (θ̂(ŵ∗))

dlw(−∆z)
dz

− [1 − Lw(−∆z)] (31)

is the distribution of ∆z conditional on a job separation, and Lw(∆w) is the CDF corresponding to the PDF

of wage changes between jobs, lw(∆w).

Proof. See Online Appendix B.5.

Equation (29) of Proposition 9 states that the volatility of productivity σ2 equals the ratio of

the variance of wage changes between jobs, Var[∆w], to the average duration between consecutive

employment spells, 1/ f (θ̂(ŵ∗)) + 1/s. Next, in order to recover the distribution of ∆z conditional

on a job separation, we exploit worker flows between employment and unemployment. Consider a

worker who at time t0 starts a job with wage wt0 , at time t0 + τm separates, and at time t0 + τm + τu

finds a new job with wage wt0+τm+τu . This worker’s wage change between jobs is given by

∆w = wt0+τm+τu − wt0 (32)

= (wt0+τm+τu − zt0+τm+τu)︸ ︷︷ ︸
=ŵ∗

− (wt0 − zt0)︸ ︷︷ ︸
=ŵ∗

+ zt0+τm+τu − zt0︸ ︷︷ ︸
=∆z after EUE transition

(33)

= ŵ∗ − ŵ∗︸ ︷︷ ︸
=0

+ zt0+τm − zt0︸ ︷︷ ︸
∆z|EU transition starting from zt0

+ zt0+τm+τu − zt0+τm︸ ︷︷ ︸
∆z|UE transition starting from zt0+τm

. (34)

Equation (32) gives the definition of ∆w. Next, equation (33) adds and subtracts zt0+τh+τu − zt0

before grouping terms into the wage-to-productivity ratio in the old job, the wage-to-productivity

ratio in the new job, and the cumulative productivity shocks between the starting dates of the

two jobs. Then, equation (34) adds and subtracts zt0+τm before applying the definition of ŵ∗ and

that of ∆z. In summary, the wage change across jobs equals the sum of three random variables:

(i) the difference of entry wage-to-productivity ratios across jobs, which is identically zero; (ii) ∆z

conditional on a job separation starting from zt0 ; and (iii) ∆z conditional on finding a new job, which

is independent of productivity zt for t ∈ (t0 + τm, t0 + τm + τu). Exploiting this independence, we

can use data on ∆w to infer the distribution of the second term, which is given by (31). Finally,

the distribution of cumulative productivity shocks in (30) can be derived from (31) by exploiting
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ergodicity—i.e., the cross-sectional distribution of cumulative shocks can be deduced from the

distribution of shocks experienced during completed job spells.

Proposition 10. The share of endogenous job separations is given by

send

s
=

σ2

2E
[
lim∆z↓−∆−(gh)′(∆z)− lim∆z↑∆+(gh)′(∆z)

]
s

. (35)

Proof. The proof follows from the conditions in Online Appendix B.6.

Equation (35) in Proposition 10 expresses the share of inefficient job separations, send/s, in terms

of the distribution of cumulative productivity shocks, gh(∆z), recovered in Proposition 9 above.21

Some of the assumptions underlying our mapping between model objects and the data could

be relaxed: (i) the threshold nature of policies; (ii) the absence of other sources of wage changes;

and (iii) the particular productivity process. Regarding (i), that the job-separation rate is δ for

∆zt ∈ (−∆−, ∆+) and ∞ for ∆zt ∈ {−∆−, ∆+} is not crucial and can be replaced with a general

job-separation hazard, as in Alvarez et al. (2022). Regarding (ii), we have ignored other sources of

wage changes, such as shocks to match productivity or on-the-job search. This could be relaxed

following Baley and Blanco (2024). Regarding (iii), the stochastic process for ∆zt can be allowed to

depend on a worker’s employment state following Baley and Blanco (2021). What is critical is that

the data allow us to recover productivity changes during employment in the model.

4 Model Extension to Staggered Wage Renegotiations

So far, our approach has been based on the minimum ingredients needed to characterize how wage-

rigidity-induced job separations at the micro level affect the propagation of shocks at the macro

level. To speak to data on wage changes on the job, we extend our analysis to the case of staggered

wage renegotiations, which follow a Nash bargaining protocol with worker weight α and occur at

rate δr ≥ 0 à la Calvo (1983). The generalized model nests as a special case the economy with fully

rigid wages (δr → 0) and also the case with fully flexible wages (δr → ∞). By convexifying between

these two cases, the generalized model allows us to replicate the empirical frequencies of wage

changes in employment. The generalized model with staggered wage renegotiations reinforces

our main conclusions, with all insights up to here extending to an environment with 0 < δr < ∞

21For detailed characterizations of the unobserved model objects, see Supplementary Materials II.3, II.4, and II.5.
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subject to minor modifications.22 For example, we extend Proposition 2 with a simple change to

the definition of match duration T (ŵ, ρ̂ + δr), which now references the duration of a wage spell

(i.e., the subsegment of an employment spell with a constant wage) instead of an employment spell.

Importantly, the sufficient statistics for the CIRs can be extended to the case of staggered wage

renegotiations following a similar intuition. This allows us to write the CIR as a function of the

wage renegotiation hazard, δr, namely CIRE (ζ, δr). We now distinguish between two types of

empirical wage changes, previously denoted ∆w. We denote the change in the wage between the

previous job’s last wage spell and the next job’s first wage spell as ∆EUEw. We contrast this with

the change in the wage between consecutive wage spells within a job as ∆rw. When E[∆EUEw] = 0,

then the CIR of aggregate employment under staggered wage renegotiations is

CIRE (ζ, δr)

ζ
=

CIRE (ζ, 0)
ζ

×
1 + δr

s+δr

(
E[(∆rw)3]

E[(∆EUEw)3]
− 1
)

1 + δr

s+δr

(
Var[∆rw]

Var[∆EUEw]
− 1
)

︸ ︷︷ ︸
renegotiations

+o(ζ). (36)

As δr → 0, the renegotiations term vanishes and we recover the CIR of aggregate employment

without renegotiations from Proposition 6, CIRE (ζ, 0)/ζ, which equation (36) generalizes to the

case with δr ≥ 0.

Similarly, we define the generalized volatility of worker productivity as

σ2(δr) = σ2(0)×
(

1 +
δrVar[∆rw]

sVar[∆EUEw]

)
︸ ︷︷ ︸

renegotiations

. (37)

As δr → 0, the renegotiations term goes to zero and we recover the volatility of worker productivity

with fixed wages from Proposition 9, σ2(0), which equation (37) generalizes to the case with δr ≥ 0.

Both of these results reflect our previous main insight that the aggregate state of the economy is

the distribution of cumulative shocks in employment, ∆z. In our baseline model, the only way to

reset ∆z to zero was through job transitions. In the generalized model with wage renegotiations,

∆z can be reset in two ways: either through job transitions or through wage renegotiations on the

job. Adjusting our key model objects for the occurrence of wage renegotiations in this way allows

us to carry over the same economic arguments as in Section 3.

22See Supplementary Material III.1 for details of this derivation.

35



5 A First Exploration of the Theory’s Implications

In this section, we take an initial step toward exploring our theory’s implications. Our goal is

twofold: first, to validate the model by replicating recent empirical evidence on wage rigidity and

job separations, and second, to quantify the model’s main propagation mechanism.

To this end, we start by calibrating our model based on microdata from the US labor market. We

then use the calibrated version of our model to replicate recent empirical evidence of the distinction

between quits versus layoffs (Graves et al., 2024) and wage rigidity’s link to the sensitivity of job

separations to aggregate shocks (Olivei and Tenreyro, 2007, 2010; Coglianese et al., 2024; Faia and

Pezone, 2024). After validating the model’s predictions, we compute our sufficient statistic for the

CIR of aggregate employment to an unanticipated aggregate shock. This allows us to measure

the amplification of business-cycle fluctuations due to the model’s key mechanism linking wage

rigidity to job separations (cf. Shimer, 2005a).

5.1 Data Description

Data Sources. We use the 1996–2001 panel of the Survey of Income and Program Participation (SIPP),

which is a multistage, stratified, representative sample of the US population. Each individual

is followed for a period of up to 48 months. For each month, the data contain the respondent’s

employment status and wages. We complement the SIPP data with selected moments from

published work based on microdata from the Current Population Survey (CPS) and Automatic Data

Processing, Inc. (ADP).

Sample Selection. We impose standard sample selection criteria used in related work. Specifically,

we restrict the data to male reference persons aged 25 to 54. We keep only workers who have been

employed for at least 12 months over the entire panel and job spells that last for a minimum of two

months. Lastly, to minimize measurement error, we focus on workers who directly report their

hourly wages, rather than imputing them based on reported total earnings and hours worked. To

minimize the influence of outliers, we also trim observations in the top and bottom 2.5 percent

of the distribution of wage changes. Finally, to be consistent with our model without on-the-job

search, we restrict attention to worker flows with at least one month of unemployment between

jobs.23

23Simulated data from our model produces what looks like “job-to-job” transitions with less than a month of interven-
ing unemployment due to time aggregation from continuous time in our theory to monthly data in practice.
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Variable Construction. We construct regular wages in the data as the empirical counterpart to

constant wage segments between staggered renegotiations in our theory. To this end, we filter out

transitory wage fluctuations and measurement error within a job spell using the nonparametric

wage filter developed in Blanco et al. (2022). Building on our previous work, we calibrate the

threshold for rejecting the null hypothesis of no wage change to match the within-job quarterly

wage change frequency of 16.3 percent reported by Barattieri et al. (2014). We use a monthly job-

separation rate of 3.3 percent from Shimer (2012) based on the CPS data and a monthly frequency

of within-job wage changes of 6.9 percent from Grigsby et al. (2021) based on the ADP data.

5.2 Model Estimation

To estimate a variant of our model to microdata from the US labor market, we externally set a

number of standard parameter values. We then internally calibrate the remaining parameters of our

model to match empirical evidence on wage changes within and across job spells in the microdata.

Model Specification. For the following analysis, we use the version of our model with homothetic

home production value and vacancy costs, occasional wage renegotiations (i.e., δr > 0), without

productivity drift (i.e., γ = 0), and flexible entry wages. These choices balance empirical realism—

namely, the observation that wages frequently change on the job—with theoretical transparency—

namely, our goal to highlight the model’s key mechanism linking wage rigidity to job separations.

Of course, several model extensions could be implemented.

Externally Set Parameters. We set a standard value for the discount rate, ρ = 0.005, corresponding

to an annual discount factor of around five percent. The elasticity of the matching function is set to

α = 0.500, following Hall and Milgrom (2008). We take the frequency of bargaining, δr = 0.069,

corresponding to the frequency of wage adjustments within jobs from Grigsby et al. (2021). The

volatility of the process for worker productivity is σ = 0.064, which we read off the data on wage

changes within and between job spells based on the expression in equation (37) from Section 4.

Internally Calibrated Parameters. This leaves us with three remaining model parameters, which

we internally calibrate. Although all three parameters are jointly determined, each of them is

particularly closely related to an empirical counterpart. These three parameters and their empirical

counterparts are: first, the relative flow value of home production, B̃, which maps into the empirical
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average job duration through its effect on the range of the inaction region; second, the relative flow

cost of vacancies, K̃, which maps into the empirical job-finding rate and thus the unemployment

rate; and third, the exogenous job-separation rate, δ, which maps into the skewness of wage changes

across consecutive employment spells.

Calibration Targets. We use three additional empirical moments to discipline the three model

parameters to be internally calibrated. These are: first, the job-separation rate of 3.3 percent per

month (Shimer, 2005a); second, the average unemployment rate of 7.0 percent; and third, the

skewness of wage changes across consecutive employment spells of 0.148 from the SIPP data.

Estimation Results. Table 2 shows the estimated model parameters reported at monthly rates.

Beyond the externally set parameters discussed above, we find a relative flow value of home

production of B̃ = 0.220, implying substantial match surplus (cf. Hagedorn and Manovskii, 2008),

a relative flow cost of vacancies, K̃ = 3.242, reflecting search frictions, and an exogenous job-

separation rate, δ = 0.004, implying an important role for endogenous job separations.

TABLE 2. ESTIMATED MODEL PARAMETERS

ρ α δr σ B̃ K̃ δ

0.005 0.500 0.069 0.064 0.220 3.242 0.004

Notes: This table shows the estimated—i.e., externally set and internally calibrated—model parameters, all reported at
monthly frequency. Source: Model simulations based on SIPP, CPS, and ADP.

5.3 Replicating Empirical Evidence on Wage Rigidity and Job Separations

The objective of this section is to use the calibrated model to replicate empirical evidence on wage

rigidity and job separations. Although the model we bring to the data is simplistic along several

dimensions, we show that it can speak to a diverse set of empirical regularities that might otherwise

seem puzzling through the lens of benchmark theories of the labor market. This illustrates the

model’s usefulness for future quantitative work.

Application I: Steady-State Incidence of Quits versus Layoffs. A novel feature of our theory is

the characterization of the labor market’s aggregate state as a distribution of worker-firm matches

over a two-sided inaction region, at the boundaries of which endogenous separations occur in

the form of worker quits and firm layoffs. Here, we compute the model’s predicted steady-state
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incidence of quits versus layoffs, which depends on the estimated distribution of workers over this

inaction region, vis-à-vis the data.

Table 3 shows the incidence of different types of job separations in the model and in the data.

The model numbers are untargeted and implied by our calibrated parameter values. We distinguish

between worker quits, firm layoffs, and exogenous separations (“other”). The data numbers are

based on empirical estimates of layoffs, quits, and other separations into unemployment for the

period from 1996 to 2001, as reported by Graves et al. (2024). The model closely matches the

incidence of layoffs, which are the dominant source of job separations. At the same time, the

baseline model overstates the incidence of quits relative to other types of job separations. We

view this as a partial success of the model, which lacks empirically plausible features such as

state-dependent job-to-job mobility and asymmetric renegotiation hazards, which would naturally

reduce the quit incentives.

TABLE 3. INCIDENCE OF DIFFERENT TYPES OF JOB SEPARATIONS

Quits (%) Layoffs (%) Other (%)
Model 37.9% 51.2% 10.9%
Data 15.7% 53.7% 30.5%

Notes: This table shows the incidence of different types of job separations in the model and in the data. For the model,
we distinguish between worker quits, firm layoffs, and exogenous separations (“other”). For the data, we use empirical
estimates of layoffs, quits, and other separations into unemployment for the period from 1996 to 2001. Source: Model
simulations and Graves et al. (2024).

Application II: The Cyclical Behavior of Different Types of Job Separations. Previous empirical

work has documented that both quits, which are procyclical, and layoffs, which are countercyclical,

are important characteristics of business-cycle fluctuations (Elsby et al., 2010, 2011; Birinci et al.,

2024b; Ellieroth and Michaud, 2024; Graves et al., 2024). Our model provides a natural framework

to trace the cyclical behavior of different types of job separations.

Figure 5 shows the simulated paths of total job separations, worker quits, and firm layoffs

following an unanticipated negative TFPR shock of magnitude equal to 1 percent starting from the

steady state at time t = 0. In response, the layoff rate (green line) increases by around 0.8 percentage

points, while the quit rate (orange line) declines by around 0.4 percentage points. As a result,

the total separation rate (blue line) increases by around 0.4 percentage points. This confirms the

empirical finding that quits are procyclical, while layoffs are countercyclical, and that the total rate

of unemployment inflows is countercyclical but smaller in magnitude. All types of job separations
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take around 12 months to revert to their steady-state rates.

FIGURE 5. RESPONSES OF DIFFERENT TYPES OF JOB SEPARATIONS TO A NEGATIVE TFPR SHOCK
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Notes: This figure shows the evolution of the total job-separation rate (blue line), the quit rate (orange line), and the
layoff rate (green line) following an unanticipated negative TFPR shock of magnitude equal to 1 percent starting from
the steady state at time t = 0. Source: Model simulations.

Application III: The Link Between Wage Rigidity and Job Separations. There is mounting

empirical evidence of wage rigidity’s link to the sensitivity of job separations to aggregate shocks.

Specifically, staggered wage renegotiations have been shown to transmit aggregate shocks to

labor markets, with a firm’s employment response depending on its ability to renegotiate wages

following monetary policy announcements (Olivei and Tenreyro, 2007, 2010; Coglianese et al., 2024;

Faia and Pezone, 2024). Here, we use our model to replicate the empirical observation that wage

renegotiations mitigate employment losses resulting from negative TFPR shocks in the presence of

wage rigidity.

Figure 6 shows the decline and subsequent reversal of job-separation rates following a wage

renegotiation that occurs (after the realization of a negative aggregate shock) at time t = 0. Immedi-

ately following a wage renegotiation, both quits and layoffs go to zero, as worker-firm matches

are reset to the center of the inaction region. Over time, both quits and layoffs revert back to

their steady-state levels, reflecting the convergence of worker-firm matches toward the ergodic

distribution, which is reached after around 12 months. Thus, in labor markets with less rigid wages

(i.e., higher δr), worker-firm matches are more likely to reset to a low job-separation rate.
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FIGURE 6. PATHS OF DIFFERENT TYPES OF JOB SEPARATIONS FOLLOWING WAGE RENEGOTIATION
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Notes: This figure shows the paths of the total job-separation rate (blue line), the quit rate (orange line), and the layoff
rate (green line) following a wage renegotiation at time t = 0. Source: Model simulations.

5.4 Amplification of Aggregate Shocks through the Job Separation Margin

Having replicated salient empirical facts, we now quantify the amplification of business-cycle

fluctuations resulting from the model’s key mechanism, which links wage rigidity to job separations

(cf. Shimer, 2005a). To this end, we estimate the sufficient statistics that make up the CIR of aggregate

employment to an unanticipated aggregate shock in equation (36) of Section 4.

Table 4 shows that the CIR of aggregate employment is 0.431, which reflects an expansionary

effect of positive TFPR shocks starting from the steady state. This number is the product of the

average unemployment duration of 2.281, a precision term of 4.387, an asymmetry term of 0.062,

and a renegotiations term of 0.693. Thus, the most important factor driving a large CIR is the

precision term, which reflects the bindingness of the inaction region, while the most important

factor driving a small CIR is the asymmetry term, which reflects the importance of layoffs relative

to quits among all job separations. Notably, the presence of on-the-job wage renegotiations lowers

the CIR by around 31 percent.

Our model specification, which incorporates homothetic home production value and vacancy

costs, as well as flexible entry wages, ensures that the job-finding rate is invariant to aggregate

shocks, in contrast to, for example, Sterk and Tenreyro (2018). Thus, the positive CIR of aggregate

employment purely reflects a drop in job separations in response to a positive productivity shock.

In other words, the model suggests that layoffs, rather than quits, are the most important source

of unemployment risk, which decreases as productivity-adjusted real wages decline. To put this

number into context, our estimate of the CIR of aggregate employment reflects a cumulative increase
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of employment of 0.431 percent for a one-percent increase in TFPR. In this sense, our model’s

propagation mechanism, which is based on wage-rigidity-induced job separations, contributes to a

greater cyclicality of macroeconomic variables by endogenizing unemployment inflows, which are

commonly treated as exogenous (Hall, 2005; Shimer, 2005b). Together with deviations from free

entry (Coles and Kelishomi, 2018), this channel can help reconcile the empirical unemployment

volatility for more realistically sized business-cycle shocks.

TABLE 4. ESTIMATED SUFFICIENT STATISTICS FOR THE CIR OF AGGREGATE EMPLOYMENT

CIR of agg. emp. avg. u. dur. precision asymmetry renegotiations

CIRE (ζ,δr)
ζ = 1

f (θ̂(ŵ∗))
× 1

Std[∆w]
× 1

3 Skew [∆w] ×
1+ δr

s+δr

(
E[(∆rw)3 ]

E[(∆EUEw)3 ]
−1
)

1+ δr
s+δr

(
Var[∆rw]

Var[∆EUEw]
−1
)

0.431 2.281 4.387 0.062 0.693

Notes: This table shows the CIR of aggregate employment (column 1) and its four components in equation (36) of Section
4—i.e., the average unemployment duration (column 2), precision (column 3), asymmetry (column 4), and renegotiations
(column 5). Source: SIPP, CPS, and ADP.

6 Conclusion

There is mounting empirical evidence that wage rigidity is linked to the sensitivity of job separations

to economic fluctuations. To understand the macroeconomic consequences of wage-rigidity-

induced job separations, we developed a theory of labor markets with four features: productivity

shocks, staggered wage renegotiations, search frictions, and two-sided lack of commitment to

remaining in a match. A defining feature of our theory was the endogeneity of job separations,

which come in the form of quits and layoffs as two separate outcomes. In general equilibrium, wage

rigidty-induced job separations also affect job creation and wage determination. We first analytically

characterized the equilibrium of this model. We used this framework to derive sufficient statistics

for the labor market response to aggregate shocks, reflecting the propagation of shocks through the

key model mechanism of wage-rigidity-induced job separations.

While its parsimony was useful in delineating several novel theoretical insights, our framework

can be extended in several dimensions in order to provide empirically disciplined quantifications.

Incorporating additional features into a unified framework with empirical discipline will allow

future work to assess the role of allocative wages in the labor market for issues including mone-

tary policy (e.g., state-dependent and nonlinear effects), fiscal policy (e.g., UI), and labor market

regulations (e.g., severance pay).
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A Proofs for Section 2: A Model of Wage-Rigidity-Induced Job Separa-

tions

Notation. We use the following mathematical notation throughout.

1. Hl(R) ⊂ L2(R): Sobolev space with weak derivatives up to order l having a finite Lp norm.

2. Characteristic operator A: Given a function f : R → R and a diffusion process {xt}, the

characteristic operator of X is given by A f = limU↓x
E[ f (XτU |x0=x]− f (x)]

E[τU |x0=x] .

3. Let u, v : R → R, (u, v) =
´

R
u(x)v(x)dx denotes the inner product in the Hilbert space

L2(R) with the Lebesgue measure, and ||u|| =
(´

u(x)2 dx
)1/2 .

4. a(u, v) is a bilinear continuous form. We say a(u, v) is coercive if a(u, u) ≥ α||u||2.

5. Let a ∧ b denote the minimum between a and b and let [x]+ = max{0, x}.

Some Useful and Known Results. Our mathematical arguments will make extensive use of the

following useful and known results.

Proposition A.1. Let A be the characteristic operator of {Xt} with Xt ∈ Rn. Let f : Rn → R be a twice

differentiable function with compact (i.e., bounded and closed in R) support, support( f ) = {x : f (x) ̸= 0}.

If τ is a stopping time with Ex[τ] < ∞, then

Ex[ f (xτ)] = f (x) + Ex

[ˆ τ

0
A f (Xt)dt

]
. (A.1)

Moreover, if τ is the first exit time of a bounded set, then (A.1) holds for any twice differentiable function.

Proof. This is Dynkin’s formula, the proof of which can be found in Øksendal (2007).

Proposition A.2. Let xt be a strong Markov process, τ be a stopping time measurable with the filtration
generated by xt, and τδ an exponential random variable independent of τ. Then

E

[ˆ τ∧τδ

0
e−ρt f (xt)dt + e−ρ(τ∧τδ)g(xτ∧τδ )

∣∣∣∣∣ x0 = x

]
= E

[ˆ τ

0
e−(ρ+δ)t[ f (xt) + δg(xt)]dt + e−(ρ+δ)τ g(xτ)

∣∣∣∣ x0 = x
]

.

Proposition A.3. Let V be a Hilbert space and H a closed convex set. Assume that a(u, v) with u, v ∈ V is

a coercive bilinear continuous form. Then, there exists a unique solution to a(u, v − u) ≥ ( f , v − u), ∀v ∈
H, u ∈ H, where f belongs to the dual of V.
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Proof. See Lions and Stampacchia (1967).

Proposition A.4 (Birkhoff-Tartar Fixed-Point Theorem). Let (V, (·, ·)) be a Hilbert space and V+ ⊂ V a

closed convex cone satisfying V+ = {x ∈ V such that (x, y) ≥ 0 ∀y ∈ V+}. We say that x ≥ y according

to the vector ordering ≥ if and only if x − y ∈ V+ with x, y ∈ V. Let T : V → V be an increasing map

from V into itself. Suppose that there exists a x, x ∈ V with x ≤ x, x ≤ T(x), T(x) ≤ x. Then, the

subset of fixed points x∗ of T satisfying x ≤ x∗ ≤ x is nonempty and has a larger and smallest element.

Proof. See the proof of Proposition 2 of Chapter 15 on page 539 of Aubin (2007).

We will use Propositions A.3 and A.4 in the proof of Proposition 1. Proposition A.3 is used

to show the existence of the best response function and its associated value function for each

agent. Notice that we are solving the differential equations associated with the HJB equations

using a quasi-variational approach—i.e., we are after the weak solution of the differential equation.

Proposition A.4 is our main tool to show the existence of the nontrivial Nash Equilibrium. Notice

that while we impose monotonicity from the order generated with the positive cone, we do not

impose that the set V is a complete lattice. Thus, we are not invoking an order-theoretical approach

to showing the existence of a fixed point. The reason is that the completeness property (i.e., all

subsets of V have both a supremum and an infimum) is hard to satisfy in the space of functions.

The best example of V and V+ are L2(R)—integrable functions using the Lebesgue measure—and

the nonnegative function subset of this Hilbert space.

A.1 Proof of Lemma 1

The equilibrium conditions are:

ρu(z) = B̃ez + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2 + max
w

f (θ(z; w))[h(z; w)− u(z)], (A.2)

0 = min
{

K̃ez − q(θ(z; w))j(z; w), θ(z; w)
}

,

ρh(z; w) =


max

{
ew + γ ∂h(z;w)

∂z + σ2

2
∂2h(z;w)

∂z2 + δ [u(z)− h(z; w)] , ρu(z)
}

∀z ∈ Z j∗(w),

ρu(z) ∀z ∈ (Z j∗(w))c,

ρj(z; w) =


max

{
ez − ew + γ

∂j(z;w)
∂z + σ2

2
∂2 j(z;w)

∂z2 − δj(z; w) , 0
}

∀z ∈ Zh∗(w),

0 ∀z ∈ (Zh∗)(w)c,

Z j∗(w) = int {z ∈ R : j(z; w) > 0 or ez − ew > 0} , (A.3)
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Zh∗(w) = int
{

z ∈ R : h(z; w) > u(z) or 0 < ew − ρu(z) + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2

}
, (A.4)

j(·; w) ∈ C1(Zh∗(w)) ∩ C(R), h(·; w) ∈ C1(Z j∗(w)) ∩ C(R). (A.5)

The equilibrium conditions in the normalized state space ŵ are:

ρ̂Û = B̃ + max
ŵ

f (θ̂(ŵ))Ŵ(ŵ), (A.6)

0 = min
{

K̃ − q(θ̂(ŵ)) Ĵ(ŵ), θ̂(ŵ)
}

,

ρ̂Ŵ(ŵ) =


max{0, eŵ − ρ̂Û − γ̂ ∂Ŵ(ŵ)

∂ŵ + σ2

2
∂2Ŵ(ŵ)

∂ŵ2 − δŴ(ŵ)} ∀ŵ ∈ Ẑ j∗

0 ∀ŵ ∈ (Ẑ j∗)c

ρ̂ Ĵ(ŵ) =


max{0, 1 − eŵ − γ̂ ∂ Ĵ(ŵ)

∂ŵ + σ2

2
∂2 Ĵ(ŵ)

∂ŵ2 − δ Ĵ(ŵ)} ∀ŵ ∈ Ẑh∗

0 ∀ŵ ∈ (Ẑh∗)c

Ẑh∗ := int
{

ŵ ∈ R : Ŵ(ŵ) > 0 or (eŵ − ρ̂Û) > 0
}

, (A.7)

Ẑ j∗ := int
{

ŵ ∈ R : Ĵ(ŵ) > 0 or
(
1 − eŵ) > 0

}
, (A.8)

Ĵ ∈ C1(Ẑh∗) ∩ C(R), Ŵ ∈ C1(Ẑ j∗) ∩ C(R), (A.9)

where ŵ = w − z, ρ̂ = ρ − γ − σ2/2 and γ̂ = γ + σ2.

Lemma 1. Assume that values (u(z), h(z; w), j(z; w), θ(z; w)) and policies (w∗(z),Z j∗(w),Zh∗(w)) are

a recursive equilibrium—i.e., they satisfy conditions (A.2)–(A.5)—, then

(
Û, Ĵ(w − z), Ŵ(w − z), θ̂(w − z), ŵ∗) = (u(z)

ez ,
j(z; w)

ez ,
h(z; w)− u(z)

ez , θ(z; w), w∗(z)− z
)

.

satisfy (A.6)–(A.9) with continuation sets Ẑh∗ and Ẑ j∗ given by (A.7)–(A.8). Moreover, if
(
Û, Ĵ(ŵ), Ŵ(ŵ), θ̂(ŵ)

)
and policies (ŵ∗, Ẑ j∗, Ẑh∗) satisfy (A.6)-(A.9), then

(u(z), j(z; w), h(z; w), θ(z; w), w∗(z)) =
(
Ûez, Ĵ(w − z)ez, (Ŵ(w − z) + Û)ez, θ̂(w − z), ŵ∗ + z

)
satisfy (A.2)–(A.5) with continuation sets Zh∗(w) and Z j∗(w) given by (A.3)–(A.4).

Proof. We use a guess-and-verify strategy for each equilibrium condition.
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A.2 Proof of Proposition 1

Proposition 1. Let Ŵ(ŵ), Ĵ(ŵ), θ̂(ŵ) be bounded functions with compact support. Then, there exists a

unique solution to

ρ̂Û = B̃ + max
ŵ

f (θ̂(ŵ))Ŵ(ŵ),

0 = min
{

K̃ − q(θ̂(ŵ)) Ĵ(ŵ), θ̂(ŵ)
}

,

Ŵ(ŵ) ≥ 0, (A.10)

Ĵ(ŵ) ≥ 0, (A.11)

i f ŵ ∈ (Ẑh)c ⇒ Ĵ(ŵ) = 0, (A.12)

i f ŵ ∈ (Ẑ j)c ⇒ Ŵ(ŵ) = 0, (A.13)

0 = max{−ρŴ(ŵ), ÂŴ(ŵ) + eŵ − ρ̂Û}, ∀ŵ ∈ Ẑ j, Ŵ ∈ C1(Ẑ j) ∩ C(R) (A.14)

0 = max{−ρ Ĵ(ŵ), Â Ĵ(ŵ) + 1 − eŵ}, ∀ŵ ∈ Ẑh, Ĵ ∈ C1(Ẑh) ∩ C(R) (A.15)

Ẑh := int
{

ŵ ∈ R : Ŵ(ŵ) > 0 or (eŵ − ρ̂Û) > 0
}

, (A.16)

Ẑ j := int
{

ŵ ∈ R : Ĵ(ŵ) > 0 or
(
1 − eŵ) > 0

}
, (A.17)

Â(v) := −(ρ̂ + δ)v − γ̂
∂v(ŵ)

∂ŵ
+

σ2

2
∂2v(ŵ)

∂ŵ2 ,

Before going to the proof, observe that conditions (A.10)–(A.11) are implied by conditions

(A.12)–(A.15) and, therefore, they are redundant. Nevertheless, they will help with the proof of

existence.

The proof uses results from a branch of mathematics that many economists may not be familiar

with. For this reason, before presenting the proof, we provide some intuition about the steps we

show below. In a nutshell, there are two steps in the proof. First, we need to show that, for a given

value of unemployment Û, there is a unique nontrivial Nash equilibrium of the game played by

the matched worker-firm pair. To understand the intuition behind this step, define ŵ+(ŵ−; ρÛ)

as the best response function of the firm in terms of its layoff threshold, and ŵ−(ŵ+; ρÛ) as the

best response function of the worker in terms of her quit threshold. It is easy to show that optimal

policies are given by wage-to-productivity thresholds. ŵ+(ŵ−; ρÛ) is the solution to the differential

equation

(ρ̂ + δ) Ĵ(ŵ) = 1 − eŵ − γ̂ Ĵ′(ŵ) +
σ2

2
Ĵ′′(ŵ), ∀w ∈ (ŵ−, ŵ+)

with border conditions Ĵ(ŵ+) = Ĵ(ŵ−) = Ĵ′(ŵ+) = 0. Notice that the smooth pasting condition
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Ĵ′(ŵ+) = 0 determines ŵ+. In the same way, ŵ−(ŵ+; ρÛ) is the solution to the differential equation

(ρ̂ + δ)Ŵ(ŵ) = eŵ − ρ̂Û − γ̂Ŵ ′(ŵ) +
σ2

2
Ŵ ′′(ŵ), ∀w ∈ (ŵ−, ŵ+)

with border conditions Ŵ(ŵ+) = Ŵ(ŵ−) = Ŵ ′(ŵ−) = 0, where Ŵ ′(ŵ−) = 0 determines ŵ−. Let

Ŵ(ŵ; ρÛ) and Ĵ(ŵ; ρÛ) be the values associated with the nontrivial equilibrium policies.

Second, we need to find the equilibrium value of unemployment. This value satisfies

P(ρ̂Û) = B̃ + max
ŵ

1
K̃1/α

Ĵ(ŵ; ρ̂Û)
1−α

α Ŵ(ŵ; ρ̂Û).

Panel A of Figure A1 shows the composition of Q(ŵ) := ŵ+(ŵ−(ŵ; ρ̂Û)) and Figure A1-Panel B

shows P(ρ̂Û). As we can see in the figure, the composition of the best response functions satisfies

two properties: (i) monotonicity (i.e., Q′(ŵ) > 0) and (ii) concavity (i.e., Q′′(ŵ) < 0). Intuitively,

the monotonicity property arises from the fact that if one agent prefers to stay in the match for

longer, then the incentives for the other agent to stay in the match are larger; thus, the other agent

also prefers to stay longer. Concavity arises from the fact that there is a decreasing value of delaying

the separation. As the figure clearly shows, a unique nontrivial Nash equilibrium exists under

these two properties. Equipped with the values from the nontrivial Nash equilibrium as a function

of Û, we can then characterize the decision problem of the unemployed worker. The mapping

P(ρ̂Û) satisfies three properties: (i) P(B̃) > B̃ with P(1) = B̃, (ii) it is continuous and (iii) it is

decreasing. Intuitively, if the flow value of unemployment is equal to B̃, then the surplus of the

match is positive, and the unemployed worker obtains a positive continuation value from searching

for a job. If, instead, the flow value of unemployment equals the value of (normalized) output,

then the surplus is zero, and the unemployed worker does not benefit from finding a job. Also,

the larger the unemployment value, the lower the value of the match, and, therefore, the value

of searching for a job. As the figure clearly shows, a unique equilibrium exists under these three

properties of P(ρ̂Û).

Proof. We divide the proof into four steps. Step 1 shows the existence of a nontrivial Nash

equilibrium for a given Û. In this step, we show the existence of a solution to conditions (A.10) to

(A.17). To simplify the exposure, we divide step 1 into three propositions. Proposition A.5 shows

the equivalence between the equilibrium conditions and the quasi-variational inequalities (i.e., a

generalization of variational inequalities to the case when the feasible set is a function of the state

variables), which is required to apply known fixed-point theorems. Proposition A.6 shows the
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FIGURE A1. INTUITION

A- Best response function B- Unemployment flow value

Notes: The figure illustrates the properties of the policy and value functions. Panel A shows the composition of
Q(ŵ) := ŵ+(ŵ−(ŵ; ρ̂Û)) and the 45 degree line. The nontrivial Nash equilibrium is given by the intersection between
these two lines. Panel B shows the composition of the individual best response functions and the fixed point in the
equilibrium P(ρ̂Û).

existence and uniqueness of the agents’ best responses. Proposition A.7 shows the existence of

equilibrium by invoking Birkhoff-Tartar’s fixed-point theorem from Proposition A.4. Observe that

we restrict the functions Ŵ(ŵ) and Ĵ(ŵ) to have bounded support. This restriction is without loss

of generality since it is a result of Proposition 2—i.e., the match’s continuation region is bounded.

Step 2 shows the uniqueness of the solution to conditions (A.10) to (A.17). We divide this proof

into two propositions. Proposition A.8 shows that the operator defined in step 1 is strong order

concave. Using concavity and techniques in the spirit of Marinacci and Montrucchio (2019) applied

to our own problem, we show uniqueness in Proposition A.9.

Step 3 shows that value functions are continuous and decreasing. We divide this step into two

propositions. First, we show in Proposition A.10 that the value associated with the worker’s “best

response” is continuous and decreasing in Û. Proposition A.11 shows these properties for the

nontrivial Nash equilibrium. Finally, step 4 proves the uniqueness of the equilibrium by showing

the existence of the unique fixed point in the unemployed worker’s value Û.

Step 1. We begin by defining a continuous bilinear form in a more general space of functions.

The objective here is to find the weak solution of the nontrivial Nash equilibrium. Since the bilinear

form uses the first derivative, we work in H1
0(R)—i.e., the Sobolev space of order 1 with bounded
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support. Let V := H1
0(R) be a Hilbert space and define the bilinear continuous form a : V ×V → R

a(v1, v2) :=
σ2

2

ˆ
R

dv1

dŵ
dv2

dŵ
dŵ + γ̂

ˆ
R

dv1

dŵ
v2(ŵ)dŵ + (ρ̂ + δ)

ˆ
R

v1(ŵ)v2(ŵ)dŵ.

Notice that a(v1, v2) is a bilinear form since it satisfies two properties for all v1, v2, v3 ∈ H1
0(R): (i)

a(v1 + v3, v2) = a(v1, v2) + a(v3, v2) and a(v1, v2 + v3) = a(v1, v2) + a(v1, v3); and (ii) a(v1α, v2) =

αa(v1, v2) and a(v1, v2α) = αa(v1, v2) with α ∈ R. To show these properties notice that the
derivative and the integral of functions are linear operators. Thus,

a(v1 + v3, v2) =
σ2

2

ˆ
R

d(v1 + v3)

dŵ
dv2
dŵ

dŵ + γ̂

ˆ
R

d(v1 + v3)

dŵ
v2(ŵ)dŵ + (ρ̂ + δ)

ˆ
R

(v1(ŵ) + v3(ŵ))v2(ŵ)dŵ

=
σ2

2

(ˆ
R

dv1
dŵ

dv2
dŵ

dŵ +

ˆ
R

dv3
dŵ

dv2
dŵ

dŵ
)
+ γ̂

(ˆ
R

dv1
dŵ

v2(ŵ)dŵ +

ˆ
R

dv3
dŵ

v2(ŵ)dŵ
)

+ (ρ̂ + δ)

(ˆ
R

v1(ŵ)v2(ŵ)dŵ +

ˆ
R

v3w(ŵ)v2(ŵ)dŵ
)
= a(v1, v2) + a(v3, v2).

a(v1α, v2) =
σ2

2

ˆ
R

d(αv1)

dŵ
dv2
dŵ

dŵ + γ̂

ˆ
R

d(αv1)

dŵ
v2(ŵ)dŵ + (ρ̂ + δ)

ˆ
R

(αv1(ŵ))v2(ŵ)dŵ = αa(v1, v2).

The proof for a(v1, v2 + v3) = a(v1, v2) + a(v1, v3) and a(v1, v2α) = αa(v1, v2) are similar. To show

it is continuous, we need to show that a(v1, v2) = α||v1||||v2||, α ∈ R. It is easy to verify that the

bilinear form is continuous using the inner product of the Soloveb space, the Cauchy-Schwarz

inequality, and compact support.

Now, we define the boundary conditions imposed by the other agent. Define Kh( Ĵ) and K j(Ŵ)

as

Kh( Ĵ) :=
{

Ŵ ∈ V : Ŵ(ŵ) ≥ 0 & i f Ĵ(ŵ) = 0 and ŵ ≥ 0 ⇒ Ŵ(ŵ) = 0
}

,

K j(Ŵ) :=
{

Ĵ ∈ V : Ĵ(ŵ) ≥ 0 & i f Ŵ(ŵ) = 0 and ŵ ≤ log(ρ̂Û) ⇒ Ĵ(ŵ) = 0
}

.

From now on, we look for solutions satisfying the variational approach within these sets.

Proposition A.5. Assume Ŵ(ŵ) ∈ C1(Ẑ j) ∩ C(R) and Ĵ(ŵ) ∈ C1(Ẑh) ∩ C(R) bounded with compact

support, where Ẑh and Ẑ j are constructed with Ŵ and Ĵ following (A.16) and (A.17). Then, Ŵ(ŵ) and

Ĵ(ŵ) solve

Ŵ ∈ Kh( Ĵ), Ĵ ∈ K j(Ŵ)

a( Ĵ, v − Ĵ) ≥
ˆ

R

(
1 − eŵ) (v − Ĵ

)
dŵ, ∀ v ∈ K j(Ŵ) (A.18)

a(Ŵ, v − Ŵ) ≥
ˆ

R

(eŵ − ρ̂Û)
(
v − Ŵ

)
dŵ, ∀ v ∈ Kh( Ĵ). (A.19)
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iff. Ŵ(ŵ) and Ĵ(ŵ) solve (A.10), (A.11), (A.12), (A.13), (A.14), and (A.15).

Before going to the proof, it is worth making some remarks. First, conditions (A.18) and

(A.19) provide a weak solution to the differential equations and not a classical solution. For the

same reason, we did not define the sets Kh( Ĵ) and K j(Ŵ) in terms of conditions holding almost

everywhere. We come back to this issue below.

Proof of Step 1—Proposition A.5. We verify conditions (A.10), (A.11), (A.12), (A.13), (A.14), and

(A.15) focusing on the firm (the worker’s conditions are verified following similar steps). It

is easy to show the converse.

Conditions (A.10) and (A.11) are satisfied. Since Ĵ ∈ K j(Ŵ), we have Ĵ(ŵ) ≥ 0.

Conditions (A.12) and (A.13) are satisfied. Define Ẑh with Ŵ. Then, (Ẑh)c = cl{ŵ ∈ R :

Ŵ(ŵ) ≤ 0 and (eŵ − ρ̂Û) ≤ 0}. Since Ŵ(ŵ) ≥ 0, we have (Ẑh)c = cl{ŵ ∈ R : Ŵ(ŵ) = 0 and ŵ ≤
log(ρ̂Û)}. Since Ĵ ∈ K j(Ŵ), if ŵ ∈ (Ẑh)c, then Ĵ(ŵ) = 0.

Conditions (A.14) and (A.15) are satisfied. Take any v ∈ K j(Ŵ). Then, if ŵ ∈ (Ẑh)c, we have
Ĵ(ŵ) = v(ŵ) = 0. Therefore, we have that, for every v, Ĵ ∈ K j(Ŵ),

a( Ĵ, v − Ĵ) ≥
ˆ

R

(1 − eŵ)
(
v − Ĵ

)
⇐⇒

σ2

2

ˆ
(Ẑh)c

d Ĵ(ŵ)

dŵ
d(v(ŵ)− Ĵ(ŵ))

dŵ
dŵ + γ̂

ˆ
(Ẑh)c

d Ĵ(ŵ)

dŵ
(v(ŵ)− Ĵ(ŵ))dŵ + (ρ̂ + δ)

ˆ
(Ẑh)c

Ĵ(ŵ)(v(ŵ)− Ĵ(ŵ))dŵ︸ ︷︷ ︸
= 0

+

σ2

2

ˆ
Ẑh

d Ĵ(ŵ)

dŵ
d(v(ŵ)− Ĵ(ŵ))

dŵ
dŵ + γ̂

ˆ
Ẑh

d Ĵ(ŵ)

dŵ
(v(ŵ)− Ĵ(ŵ))dŵ + (ρ̂ + δ)

ˆ
Ẑh

Ĵ(ŵ)(v(ŵ)− Ĵ(ŵ))dŵ ≥
ˆ
Ẑh

(1 − eŵ)
(
v(ŵ)− Ĵ(ŵ)

)
dŵ +

ˆ
(Ẑh)c

(1 − eŵ)
(
v(ŵ)− Ĵ(ŵ)

)
dŵ︸ ︷︷ ︸

= 0

⇐⇒

σ2

2

ˆ
Ẑh

d Ĵ(ŵ)

dŵ
d(v(ŵ)− Ĵ(ŵ))

dŵ
dŵ + γ̂

ˆ
Ẑh

d Ĵ(ŵ)

dŵ
(v(ŵ)− Ĵ(ŵ))dŵ + (ρ̂ + δ)

ˆ
Ẑh

Ĵ(ŵ)(v(ŵ)− Ĵ(ŵ))dŵ ≥
ˆ
Ẑh

(1 − eŵ)
(
v(ŵ)− Ĵ(ŵ)

)
dŵ.

Using integration by parts, we obtain

σ2

2

ˆ
Ẑh

d Ĵ(ŵ)

dŵ
d(v(ŵ)− Ĵ(ŵ))

dŵ
dŵ =(1) σ2

2
d Ĵ(ŵ)

dŵ
(v(ŵ)− Ĵ(ŵ))

∣∣∣∣
ŵ∈∂∈Ẑh︸ ︷︷ ︸

= 0

−σ2

2

ˆ
Ẑh

d2 Ĵ(ŵ)

dŵ
(v(ŵ)− Ĵ(ŵ))dŵ.

In (1), there could be two cases for the first term. The first case is a finite limit of integration (i.e.,

Ẑh is bounded). In this case, we use the continuity of the functions and the fact that if ŵ → ∂Ẑh

(Ẑh is open), then ŵ → (Ẑh)c and, therefore, Ĵ(ŵ) = v(ŵ) = 0. The second case is an infinite limit

of integration. In this case, the assumption of bounded support implies Ĵ(ŵ) = 0 for sufficiently

large or small ŵ, thus Ĵ′(ŵ) = 0. In conclusion,
´
Ẑh

(
Â Ĵ(ŵ) + (1 − eŵ)

)
(v(ŵ)− Ĵ(ŵ))dŵ ≤ 0.
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Before continuing, we remark that the previous equality holds for all v(ŵ) ∈ K j(Ŵ). Let O be

an open ball in Ẑh that covers an arbitrary point ŵ ∈ Ẑh. Then, we can find a family of smooth

functions indexed by n with oŵ(n) ∈ [0, 1], s.t. oŵ(n) = 0 outside Ẑh, oŵ(n) → 1 in O, and

oŵ(n) → 0 outside O. Since Ĵ(ŵ) + oŵ(n) ≥ 0, Ĵ(ŵ) + oŵ(n) ∈ K j(Ŵ) and

ˆ
O

(
Â Ĵ(ŵ) + (1 − eŵ)

)
oŵ(n)dŵ +

ˆ
Ẑh/O

(
Â Ĵ(ŵ) + (1 − eŵ)

)
oŵ(n)dŵ ≤ 0.

Taking the limit n → ∞, we have that
´
O
(
Â Ĵ(ŵ) + (1 − eŵ)

)
dŵ ≤ 0. Since O is arbitrary, Â Ĵ(ŵ) +

1− eŵ ≤ 0 a.e. in Ẑh. Since Ĵ(ŵ) ∈ C1(Ẑh) , then Â Ĵ(ŵ) + 1− eŵ ≤ 0 for all ŵ whenever the second

derivative is defined. To obtain the other inequality, consider Ĵ(ŵ)(1 − oŵ(n)) + 0oŵ(n) ∈ K j(Ŵ)

and we have

−
ˆ
O

(
Â Ĵ(ŵ) + (1 − eŵ)

)
Ĵ(ŵ)oŵ(n)dŵ −

ˆ
Ẑh/O

(
Â Ĵ(ŵ) + (1 − eŵ)

)
Ĵ(ŵ)oŵ(n)dŵ ≤ 0

Taking the limit n → ∞, we have that
´
O
(
Â Ĵ(ŵ) + (1 − eŵ)

)
(− Ĵ(ŵ))dŵ ≤ 0 almost everywhere.

Since Ĵ(ŵ) ∈ C1(Ẑh), we have that for all ŵ ∈ Ẑh

(
Â Ĵ(ŵ) + (1 − eŵ)

)
(− Ĵ(ŵ)) ≤ 0.

Since Ĵ(ŵ) ≥ 0 and
(
Â Ĵ(ŵ) + (1 − eŵ)

)
≤ 0, we have that

(
Â Ĵ(ŵ) + (1 − eŵ)

)
(− Ĵ(ŵ)) ≥ 0.

Thus,
(
Â Ĵ(ŵ) + 1 − eŵ) (− Ĵ(ŵ)) = 0 or written more compactly 0 = max{− Ĵ(ŵ), Â Ĵ(ŵ) + 1 −

eŵ}, ∀ŵ ∈ Ẑh, with Ĵ(ŵ) ∈ C1(Ẑh) ∩ C(R).

Proposition A.6. Define the value functions that are obtained from the best responses as BRh : H1(R) →
H1(R) and BRj : H1

0(R) → H1
0(R) such that

BRh( Ĵ) = {Ŵ ∈ H1(R) : a(Ŵ, v − Ŵ) ≥ (eŵ − ρ̂Û, v − Ŵ), ∀ v ∈ Kh( Ĵ), Ŵ ∈ Kh( Ĵ)},

BRj(Ŵ) = { Ĵ ∈ H1(R) : a( Ĵ, v − Ĵ) ≥ (1 − eŵ, v − Ĵ), ∀ v ∈ K j(Ŵ), Ĵ ∈ K j(Ŵ)}.

Then, BRh( Ĵ) and BRj(Ŵ) exist and are unique.

Proof of Step 1—Proposition A.6. Here, we show that the value functions that are obtained from the

best responses are well-defined. For this, we need to verify the conditions in Proposition A.3.

Basically, we need to show that K j(Ŵ) is closed and convex, and that a(·, ·) is coercive.
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Kj(Ŵ) is closed and convex. First, we show that K j(Ŵ) is closed. Take a sequence Ĵn ∈ K j(Ŵ)

s.t. Ĵn converges to some Ĵ∗. Since Ĵn ∈ K j(Ŵ) ,

Ĵn(ŵ) ≥ 0, if Ŵ(ŵ) = 0 and ŵ ≤ log(ρ̂Û), then Ĵn(ŵ) = 0

for all n and all ŵ. Taking the limit in the real numbers,

Ĵ∗(ŵ) ≥ 0, if Ŵ(ŵ) = 0 and ŵ ≤ log(ρ̂Û), then Ĵ∗(ŵ) = 0

where we use the fixed domain in the second limit. Thus, K j(Ŵ) is closed.

To show that K j(Ŵ) is convex, take Ĵ1, Ĵ2 ∈ K j(Ŵ), then

Ĵ1(ŵ) ≥ 0, if Ŵ(ŵ) = 0 and ŵ ≤ log(ρ̂Û), then Ĵ1(ŵ) = 0,

Ĵ2(ŵ) ≥ 0, if Ŵ(ŵ) = 0 and ŵ ≤ log(ρ̂Û), then Ĵ2(ŵ) = 0,

all ŵ. Taking the convex combination with λ ∈ [0, 1]

λ Ĵ1 + (1 − λ) Ĵ2 ≥ 0, if Ŵ(ŵ) = 0 and ŵ ≥ 0, then λ Ĵ1 + (1 − λ) Ĵ2 = 0.

Thus, K j(Ŵ) is convex.

a(u, v) is coercive. Operating over the bilinear operator

a(v, v) =
σ2

2

ˆ
R

dv(ŵ)

dŵ
dv(ŵ)

dŵ
dŵ + γ̂

ˆ
R

dv(ŵ)

dŵ
v(ŵ)dŵ + (ρ̂ + δ)

ˆ
R

v(ŵ)2dŵ

=(1) σ2

2

ˆ
R

(
dv(ŵ)

dŵ

)2

dŵ︸ ︷︷ ︸
≥0

+γ̂ v(ŵ)2∣∣∞
−∞︸ ︷︷ ︸

= 0

+(ρ̂ + δ)

ˆ
R

v(ŵ)2dŵ

≥(2) (ρ̂ + δ)

ˆ
R

v(ŵ)2dŵ = (ρ̂ + δ)||v||2

Step (1) integrates
´

R

dv(ŵ)
dŵ v(ŵ)dŵ = 1

2 v(ŵ)2
∣∣∞
−∞ and uses compact support. Step (2) uses the

nonnegativity of the squared derivative term.

With the properties verified, we can apply Proposition A.3. Thus, the best response exists, and

it is unique.

Proposition A.7. Define Q(Ŵ) = (BRh ◦ BRj)(Ŵ), then there exists a fixed point Q(Ŵ∗) = Ŵ∗ and
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Ĵ∗ = BRj(Ŵ∗). The set of fixed points is bounded above and below by

0 ≤ Ŵ ≤ Ŵ∗ ≤ Ŵ,

0 ≤ Ĵ ≤ Ĵ∗ ≤ Ĵ,

where

a(Ŵ, v − Ŵ) ≥ (eŵ − ρ̂Û, Ŵ), ∀ v ∈ Ksmall , Ŵ ∈ Ksmall ,

a( Ĵ, v − Ĵ) ≥ (1 − eŵ, Ĵ), ∀ v ∈ Ksmall , Ĵ ∈ Ksmall ,

a(Ŵ, v − Ŵ) ≥ (eŵ − ρ̂Û, Ŵ), ∀ v ∈ Kbig, Ŵ ∈ Kbig,

a( Ĵ, v − Ĵ) ≥ (1 − eŵ, Ĵ), ∀ v ∈ Kbig, Ĵ ∈ Kbig,

with

Ksmall :=
{

v ∈ V : v(ŵ) ≥ 0 & i f ŵ /∈ (log(ρ̂Û), 0) ⇒ v(ŵ) = 0
}

,

Kbig := {v ∈ V : v(ŵ) ≥ 0} ,

with a maximum and minimum element.

Proof of Step 1—Proposition A.7. The first step consists in showing that the function Q(W) is mono-

tonically increasing—i.e., if Ŵ1 ≥ Ŵ2, then Q(Ŵ1) ≥ Q(Ŵ2). To show this result, first, we need to

prove that K j(Ŵ) is increasing—i.e., if Ŵ1 ≥ Ŵ2, then K j(Ŵ2) ⊂ K j(Ŵ1). Take Ĵ2 ∈ K j(Ŵ2), then

Ĵ2 ≥ 0, & i f Ŵ2(ŵ) = 0 and ŵ ≤ log(ρ̂Û) ⇒ Ĵ2(ŵ) = 0.

Since Ŵ2(ŵ) ≥ 0, we have

Ĵ2 ≥ 0, & Ĵ2(ŵ) = 0 ∀ŵ ∈ {ŵ : Ŵ2(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)}.

Now, we show that {ŵ : Ŵ1(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)} ⊂ {ŵ : Ŵ2(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)}. Take

ŵ ∈ {ŵ : Ŵ1(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)}. Then, Ŵ1(ŵ) ≤ 0 and, since Ŵ1(ŵ) ≥ Ŵ2(ŵ), we have

that Ŵ2(ŵ) ≤ 0. Since {ŵ : Ŵ1(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)} ⊂ {ŵ : Ŵ2(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)}, the
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previous condition holds for the larger set, so it will also hold for the smaller set

Ĵ2 ≥ 0, & Ĵ2(ŵ) = 0, ∀ŵ ∈ {ŵ : Ŵ1(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)}.

Thus, Ĵ2 ∈ K j(W1) and K j(Ŵ2) ⊂ K j(W1).

Now, let Ŵ1 ≥ Ŵ2. We need to show that Ĵ1 = BRj(Ŵ1) ≥ BRj(Ŵ2) = Ĵ2. Since K j(Ŵ) is

increasing—i.e., K j(Ŵ2) ⊂ K j(Ŵ1)— Ĵ1, Ĵ2 ∈ K j(Ŵ1) and the envelope max{ Ĵ1, Ĵ2} ∈ K j(Ŵ1). Now,

we show that min{ Ĵ1, Ĵ2} ∈ K j(Ŵ2). Since Ĵ1, Ĵ2 ≥ 0, we have that min{ Ĵ1, Ĵ2} ≥ 0. Moreover, take

a ŵ s.t. Ŵ2(ŵ) ≤ 0 and ŵ ≤ log(ρ̂Û), then 0 = Ĵ2 = min{ Ĵ2, Ĵ1}. Thus, min{ Ĵ1, Ĵ2} ∈ K j(Ŵ2). In

conclusion, we can use max{ Ĵ1, Ĵ2} as a test function for K j(Ŵ1) and min{ Ĵ1, Ĵ2} as a test function

for K j(Ŵ2):

min{ Ĵ1, Ĵ2} = Ĵ2 − max{ Ĵ2 − Ĵ1, 0} for test function for K j(Ŵ2)

max{ Ĵ1, Ĵ2} = Ĵ1 + max{ Ĵ2 − Ĵ1, 0} for test function for K j(Ŵ1)

Using the quasi-variational inequality

a( Ĵ2,−max{ Ĵ2 − Ĵ1, 0}) ≥ (1 − eŵ,−max{ Ĵ2 − Ĵ1, 0})

a( Ĵ1, max{ Ĵ2 − Ĵ1, 0}) ≥ (1 − eŵ, max{ Ĵ2 − Ĵ1, 0}).

Thus, since a(·, ·) is a bilinear form

−a( Ĵ2, max{ Ĵ2 − Ĵ1, 0}) ≥ −(1 − eŵ, max{ Ĵ2 − Ĵ1, 0})

a( Ĵ1, max{ Ĵ2 − Ĵ1, 0}) ≥ (1 − eŵ, max{ Ĵ2 − Ĵ1, 0}).

Summing these two equalities, we obtain

a( Ĵ1, max{ Ĵ2 − Ĵ1, 0})− a( Ĵ2, max{ Ĵ2 − Ĵ1, 0}) ≥ 0

or equivalently,

a( Ĵ2, max{ Ĵ2 − Ĵ1, 0})− a( Ĵ1, max{ Ĵ2 − Ĵ1, 0}) ≤ 0.

Next, we show that the previous inequality implies a(max{ Ĵ2 − Ĵ1, 0}, max{ Ĵ2 − Ĵ1, 0}) ≤ 0. Define
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the set X = {x : Ĵ2 > Ĵ1}. Then,

a( Ĵ2, max{ Ĵ2 − Ĵ1, 0})− a( Ĵ1, max{ Ĵ2 − Ĵ1, 0})

=
σ2

2

(ˆ
X

d Ĵ2(ŵ)

dŵ
d( Ĵ2 − Ĵ1)

dŵ
dŵ −

ˆ
X

d Ĵ1(ŵ)

dŵ
d( Ĵ2 − Ĵ1)

dŵ
dŵ +

ˆ
R/X

0 dx
)

· · ·+ γ̂

(ˆ
X

d Ĵ2(ŵ)

dŵ
( Ĵ2 − Ĵ1)dŵ −

ˆ
X

d Ĵ1(ŵ)

dŵ
( Ĵ2 − Ĵ1)dŵ +

ˆ
R/X

0 dx
)

· · ·+ (ρ̂ + δ)

(ˆ
X

Ĵ2( Ĵ2 − Ĵ1)dŵ −
ˆ

X

Ĵ1( Ĵ2 − Ĵ1)dŵ +

ˆ
R/X

0 dŵ
)

=
σ2

2

ˆ
X

(
d( Ĵ2 − Ĵ1)

dŵ

)2

dŵ + γ̂

ˆ
X

d( Ĵ2(ŵ)− Ĵ1)

dŵ
( Ĵ2 − Ĵ1)dŵ + (ρ̂ + δ)

(ˆ
X

( Ĵ2 − Ĵ1)
2 dŵ

)
= a(max{ Ĵ2 − Ĵ1, 0}, max{ Ĵ2 − Ĵ1, 0}).

Since a(·, ·) is a coercive bilinear form, 0 ≥ a(max{ Ĵ2 − Ĵ1, 0}, max{ Ĵ2 − Ĵ1, 0}) ≥ K||max{ Ĵ2 −
Ĵ1, 0}||2. Thus, Ĵ1 ≥ Ĵ2 a.e., and by continuity Ĵ1 ≥ Ĵ2 for all ŵ. Applying similar arguments to

BRh( Ĵ), we have that Ŵ1 ≥ Ŵ2 implies Q(Ŵ1) ≥ Q(Ŵ2), so by Proposition A.4 (Birkhoff-Tartar’s

fixed-point theorem), there exists a fixed point. Moreover, the set of fixed points has a maximum

and a minimum—i.e., {Ŵ ∈ H1
0(R) : Ŵ = Q(Ŵ)} has a Ŵmin and Ŵmax s.t. Ŵmin ≤ Ŵ∗ ≤ Ŵmax

for all Ŵ∗ ∈ {Ŵ ∈ H1
0(R) : Ŵ = Q(Ŵ)}.

Observe that since the flow payoff function and the coefficient of the characteristic operator are

infinitely differentiable and the continuation set is bounded, by Theorems 3 and 6 of Chapter 6 of

Evans (2022), we have that Ŵ, Ĵ are infinite differentiable in the continuation set of the game and

differentiable in the continuation set of the other agent.

To find the upper and lower bound, observe that we can write the nontrivial Nash equilib-

rium policies as Ĵ∗(w) = max{τ j∈T :τ j≤τh∗} E
[´ τ j

0 e−(ρ̂+δ)t(1 − eŵt)dt|ŵ0 = ŵ
]
. Since ∞ > τh∗ ≥

τ(log(ρ̂Û,0)),
24 we have

0 ≤ Ĵ = max
{τ j∈T :τ j≤τ(log(ρ̂Û,0))}

E

[ˆ τ j

0
e−(ρ̂+δ)t(1 − eŵt)dt|ŵ0 = ŵ

]

≤ max
{τ j∈T :τ j≤τh∗}

E

[ˆ τ j

0
e−(ρ̂+δ)t(1 − eŵt)dt|ŵ0 = ŵ

]
= Ĵ∗(w)

≤ max
{τ j∈T }

E

[ˆ τ j

0
e−(ρ̂+δ)t(1 − eŵt)dt|ŵ0 = ŵ

]
= Ĵ.

24τ(log(ρ̂Û,0)) := inf
{

t ≥ 0 : ŵt /∈ (log(ρ̂Û, 0))
}

.
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Step 2. This step proves the uniqueness of the fixed point. The first proposition shows

that Q : H1
0(R) → H1

0(R) is concave. Since the Q operator is only defined for nonnegative

functions, we assume that the domain is restricted to nonnegative functions without loss of

generality. Since the game’s continuation region is bounded, flow payoffs are bounded. Therefore,

the equilibrium value functions are also bounded. Thus, without loss of generality, we restrict

the Q : A → A operator in A = {v ∈ H1
0(R) : v(ŵ) ∈ [0, v], ∀ŵ}. Observe that A is order

convex—i.e., if a, b ∈ A with a ≤ c ≤ b, then c ∈ A. Define the operator α : A×A → A, where

α(Ŵ ′, Ŵ ′′) = α(ŵ)Ŵ ′(ŵ) + (1 − α(ŵ))Ŵ ′′(ŵ), with α(ŵ) ∈ [0, 1].

Proposition A.8. Q : A → A is strongly order concave—i.e., Q(α(Ŵ ′, Ŵ ′′)) ≥ α(Q(Ŵ ′), Q(Ŵ ′′)) for

all Ŵ ′ ≤ Ŵ ′′.

Proof of Step 2—Proposition A.8. Take Ŵ ′ ≤ Ŵ ′′. The proof has three arguments. First, we show that

K j(α(Ŵ ′, Ŵ ′′)) = K j(Ŵ ′′). With this result, we show that the BRj(α(Ŵ ′, Ŵ ′′)) ≥ α(BRj(Ŵ ′), BRj(Ŵ ′′)).

Finally, we show that Q(α(Ŵ ′, Ŵ ′′)) ≥ α(Q(Ŵ ′), Q(Ŵ ′′)).

To see that K j(α(Ŵ ′, Ŵ ′′)) = K j(Ŵ ′′), observe that since α(Ŵ ′, Ŵ ′′) ≤ Ŵ ′′ and K j(·) is increas-

ing, we have K j(α(Ŵ ′, Ŵ ′′)) ⊂ K j(Ŵ ′′). Now, we show that K j(Ŵ ′′) ⊂ K j(α(Ŵ ′, Ŵ ′′)). For any

Ĵ ∈ K j(Ŵ ′′),

Ĵ ≥ 0, & i f Ŵ ′′(ŵ) = 0 and ŵ ≤ log(ρ̂Û) ⇒ Ĵ(ŵ) = 0.

If Ŵ ′′(ŵ) = 0, then Ŵ ′′(ŵ) ≥ Ŵ ′(ŵ) = 0, which is then also true for any convex combination.

Thus, α(Ŵ ′, Ŵ ′′) ≤ Ŵ ′′ = 0 and

Ĵ ≥ 0, and (α(Ŵ ′, Ŵ ′′) = 0 ∧ ŵ ≤ log(ρ̂Û)) ⇒ Ĵ(ŵ) = 0.

In conclusion, Ĵ ∈ K j(α(Ŵ ′, Ŵ ′′)) and K j(Ŵ ′′) ⊂ K j(α(Ŵ ′, Ŵ ′′)). Therefore, K j(α(Ŵ ′, Ŵ ′′)) =

K j(Ŵ ′′).

Since the constraint set—i.e., Ŵ and any test function v in K j(·)—is the same for α(Ŵ ′, Ŵ ′′) and

Ŵ ′′:

BRj(α(Ŵ ′, Ŵ ′′)) = BRj(Ŵ ′′),

= α(BRj(Ŵ ′′), BRj(Ŵ ′′)),
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≥ α(BRj(Ŵ ′), BRj(Ŵ ′′)),

where the last inequality uses monotonicity of BRj(Ŵ). A similar property holds for BRh( Ĵ). In

conclusion, BRj(Ŵ) and BRh( Ĵ) are increasing and strongly order concave. Using this result, for

Ŵ ′ ≤ Ŵ ′′:

Q(α(Ŵ ′, Ŵ ′′)) = BRh(BRj(α(Ŵ ′, Ŵ ′′)))

≥(1) BRh(α(BRj(Ŵ ′), BRj(Ŵ ′′)))

≥(2) α(BRh(BRj(Ŵ ′)), BRh(BRj(Ŵ ′′)))

= α(Q(Ŵ ′), Q(Ŵ ′′)).

Step (1) uses the monotonicity of BRh( Ĵ) and the strong order concavity of BRj(Ŵ). Step (2) uses

the strong order concavity of BRh( Ĵ).

Proposition A.9. Q : A → A has a unique fixed point.

Proof of Step 2—Proposition A.9. We have shown that Q(Ŵ) is monotone and order concave defined

in an order convex set. Now, we prove the result by contradiction. Let Ŵ be the minimum fixed

point and let Ŵ∗ be another fixed point with Ŵ∗ > Ŵ (here, > stand for Ŵ∗(ŵ) ≥ Ŵ(ŵ) for ŵ and

with stricly inequality for some ŵ). Then, we can write Ŵ = α∗(0, Ŵ∗) for some α∗(ŵ) function,

where zero is the lower bound in the domain. Importantly, it is easy to see that α∗(ŵ) ∈ [0, 1] for all

ŵ ∈ (log(ρ̂Û, 0)) and open interval for some ŵ. Thus,

Ŵ =(1) Q(Ŵ) =(2) Q(α∗(0, Ŵ∗)) ≥(3) α∗(Q(0), Q(Ŵ∗)) =(4) α∗(Q(0), Ŵ∗) >(5) α∗(0, Ŵ∗) =(6) Ŵ

Step (1) uses the fact that Ŵ is a fixed point and step (2) uses the fact that Ŵ = α∗(0, Ŵ∗). Step (3)

uses the strong order concavity of Q. Step (4) uses the fact that Ŵ∗ is a fixed point. Step (5) uses

that Q(0) > 0 for all ŵ ∈ (log(ρ̂Û), 0). Since it cannot be that Ŵ > Ŵ, we have a contradiction.

Step 3. Let Ŵ∗(ŵ; ρ̂Û) and Ĵ∗(ŵ; ρ̂Û) be the value functions from the unique nontrivial Nash

equilibrium. We now show that they are continuous and decreasing in Û.
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Proposition A.10. Fix Ĵ. Let Ŵ(ŵ; ρ̂Û) = BRh( Ĵ; ρ̂Û) be the solution of

a(Ŵ, v − Ŵ) ≥ (1 − ρ̂Û, v − Ŵ), ∀v ∈ Kh( Ĵ), Ŵ ∈ Kh( Ĵ)

Then, Ŵ(ŵ; ρ̂Û) is continuous and decreasing in ρ̂Û.

Proof of Step 3—Proposition A.10. First, we prove continuity. Take Û1 and Û2 and define Ŵ1 =

BRh( Ĵ; ρ̂Û1) and Ŵ2 = BRh( Ĵ; ρ̂Û2). Then,

a(Ŵ1, v − Ŵ1) ≥ (1 − ρ̂Û1, v − Ŵ1), (A.20)

a(Ŵ2, v − Ŵ2) ≥ (1 − ρ̂Û2, v − Ŵ2). (A.21)

Let Ŵ2 be the test function for (A.20) and let Ŵ1 be the test function for (A.21). Summing both

equations

a(Ŵ1, Ŵ2 − Ŵ1) + a(Ŵ2, Ŵ1 − Ŵ2) ≥ (1 − ρ̂Û1, Ŵ2 − Ŵ1) + (1 − ρ̂Û2, Ŵ1 − Ŵ2)

or equivalently

a(Ŵ1 − Ŵ2, Ŵ2 − Ŵ1) ≥ (ρ̂(Û2 − Û1), Ŵ2 − Ŵ1).

Multiplying by −1 on both sides and under the observation that (ρ̂(Û2 − Û1), Ŵ2 − Ŵ1) = ρ̂(Û2 −
Û1)(1, Ŵ2 − Ŵ1), we obtain

a(Ŵ2 − Ŵ1, Ŵ2 − Ŵ1) ≤ ρ̂(Û1 − Û2)(1, Ŵ2 − Ŵ1).

Given that the operator is coercive and that

(1, Ŵ2 − Ŵ1) =

ˆ
R

(
Ŵ(ŵ; ρ̂Û2)− Ŵ(ŵ; ρ̂Û1)

)
dŵ ≤

(ˆ
R

(
Ŵ(ŵ; ρ̂Û2)− Ŵ(ŵ; ρ̂Û1)

)2
dŵ
)1/2

,

we have

β||Ŵ2 − Ŵ1||2 ≤ a(Ŵ2 − Ŵ1, Ŵ2 − Ŵ1) ≤ ρ̂(Û1 − Û2)(1, Ŵ2 − Ŵ1) ≤ ρ̂|Û1 − Û2|||Ŵ2 − Ŵ1||

for some β > 0. Thus, ||Ŵ2 − Ŵ1|| ≤ ρ̂
β |Û1 − Û2|. With this inequality, we can verify the continuity

of Ŵ(ŵ; ρ̂Û). Let ϵ > 0 and choose |Û1 − Û2| < ϵ
β
ρ̂ . Then, ||Ŵ2 − Ŵ1|| < ϵ. Thus, Ŵ(ŵ; ρ̂Û) is
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continuous.

Now, we prove that Ŵ(ŵ; ρ̂Û) is decreasing in the second argument. Let Û1 > Û2 and define

Ŵ1 = BRh( Ĵ; ρ̂Û1) and Ŵ2 = BRh( Ĵ; ρ̂Û2). Observe that Ŵ1, Ŵ2 ∈ Kh( Ĵ). Thus, min{Ŵ1, Ŵ2} and

max{Ŵ1, Ŵ2} ∈ Kh( Ĵ). Therefore, we can use min{Ŵ1, Ŵ2} = Ŵ1 − max{Ŵ1 − Ŵ2, 0} as a test

function with Û1 and max{Ŵ1, Ŵ2} = Ŵ2 +max{Ŵ1 − Ŵ2, 0} as a test function with Û2. Therefore,

−a(Ŵ1, max{Ŵ1 − Ŵ2, 0}) ≥ −(1 − ρ̂Û1, max{Ŵ1 − Ŵ2, 0}),

a(Ŵ2, max{Ŵ1 − Ŵ2, 0}) ≥ (1 − ρ̂Û2, max{Ŵ1 − Ŵ2, 0}).

Adding both inequalities, we obtain

a(Ŵ2 − Ŵ1, max{Ŵ1 − Ŵ2, 0}) ≥ ρ̂
(
Û1 − Û2

)
(1, max{Ŵ1 − Ŵ2, 0}).

Multiplying by -1 and under the observation that a(Ŵ1 − Ŵ2, max{Ŵ1 − Ŵ2, 0}) = a(max{Ŵ1 −
Ŵ2, 0}, max{Ŵ1 − Ŵ2, 0}) ≥ β||max{Ŵ1 − Ŵ2, 0}||2 for some β > 0, we have

||max{Ŵ1 − Ŵ2, 0}||2 ≤ ρ̂

β

(
Û2 − Û1

)
(1, max{Ŵ1 − Ŵ2, 0}).

Since Û1 > Û2, we have that Û2 − Û1 < 0. Assume, by contradiction, that Ŵ1 > Ŵ2, then

(1, max{Ŵ1 − Ŵ2, 0}) > 0. Operating,

0 < ||max{Ŵ1 − Ŵ2, 0}||2 ≤ ρ̂

β

(
Û2 − Û1

)
(1, max{Ŵ1 − Ŵ2, 0}) < 0.

Thus, we have a contradiction. In conclusion, Ŵ(ŵ; ρ̂Û) is decreasing in the second argument.

Observe that Ĵ(ŵ) = BRj(Ŵ) is independent of ρ̂Û.

Proposition A.11. Let Ŵ∗(ŵ; ρ̂Û) be the nontrivial Nash equilibrium, then it is continuous and decreasing

in the second argument.

Proof of Step 3—Proposition A.11. First, we show that the value function in the nontrivial Nash

equilibrium is decreasing in Û. If Û1 > Û2, we have, by the previous step, that Q(Ŵ, ρ̂Û1) ≤
Q(Ŵ, ρ̂Û2). Define recursively Qn(Ŵ, ρ̂Û1) = Q ◦ Qn−1(Ŵ, ρ̂Û1). By monotonicity, Qn(Ŵ, ρ̂Û1) ≤
Qn(Ŵ, ρ̂Û2) holds for all n. By Theorem 18 of Marinacci and Montrucchio (2019), Qn(Ŵ, ρ̂Û1) →
Ŵ∗(ŵ; ρ̂Û1) and Qn(Ŵ, ρ̂Û2) → Ŵ∗(ŵ; ρ̂Û2). Thus, Ŵ∗(ŵ; ρ̂Û1) ≤ Ŵ∗(ŵ; ρ̂Û2). In conclusion, the
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nontrivial Nash equilibrium is decreasing in Û.

Now, we show continuity. Take Ûn ↑ Û∗ (resp. Ûn ↓ Û∗). Then, it is easy to see that Ŵ∗(ŵ; ρ̂Ûn)

is monotonic, and by completeness, it is easy to see that Ŵ∗(ŵ; ρ̂Ûn) is a convergent series. Thus,

Ŵ∗(ŵ; ρ̂Û) is continuous in the second element.

Step 4. We now show the existence of the unique fixed point in ρ̂Û. Using the free entry

condition, we can define the value of the unemployed worker as

P(ρ̂Û) := B̃ + max
ŵ

1
K̃1/α

Ĵ(ŵ; ρ̂Û)
1−α

α Ŵ(ŵ; ρ̂Û).

We now show two propositions: (i) we show relevant properties of P(ρ̂Û), (ii) we use these

properties to show the existence of a unique fixed point P(ρ̂Û∗) = ρ̂Û∗.

Proposition A.12. The following properties hold for P(ρ̂Û):

• P(ρ̂Û) exists and is unique.

• P(ρ̂Û) is continuous.

• P : [B̃, P̄] → [B̃, P̄] and it is decreasing.

Proof of Step 4—Proposition A.12. From Proposition 2, Ẑh ∩ Ẑ j is bounded, so

max
ŵ

1
K̃1/α

Ĵ(ŵ; ρ̂Û)
1−α

α Ŵ(ŵ; ρ̂Û) = max
ŵ∈cl{Z j∩Zh}

1
K̃1/α

Ĵ(ŵ; ρ̂Û)
1−α

α Ŵ(ŵ; ρ̂Û).

Since Ĵ(·; ρ̂Û) and Ŵ(·; ρ̂Û) are continuous and the optimization is over a compact support, by the

extreme value theorem there exists a maximum, which is unique.

Since Ĵ(ŵ; ρ̂Û) and Ŵ(ŵ; ρ̂Û) are continuous in both arguments, by the maximum theorem, the

maximal value is continuous.

Let ŵ∗(ρ̂Û) be the solution to the optimization problem. Then, if Û < Û′,

1
K̃1/α

Ĵ(ŵ∗(ρ̂Û); ρ̂Û)
1−α

α Ŵ(ŵ∗(ρ̂Û); ρ̂Û) ≥(1) 1
K̃1/α

Ĵ(ŵ∗(ρ̂Û′); ρ̂Û)
1−α

α Ŵ(ŵ∗(ρ̂Û′), ρ̂Û)

≥(2) 1
K̃1/α

Ĵ(ŵ∗(ρ̂Û′), ρ̂Û′)
1−α

α Ŵ(ŵ∗(ρ̂Û′), ρ̂Û′).

Step (1) uses the optimality of ŵ∗(ρ̂Û) and step (2) uses the fact that Ĵ and Ŵ are decreasing in the

second argument. Thus, P(ρ̂Û) is decreasing. By Proposition 2, we have that P̄ =: P(B̃) > B̃. Since

P(ρ̂Û) ≥ B̃ ( Ĵ(·) and Ŵ(·) are nonnegative), we have that P : [B̃, P̄] → [B̃, P̄].
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Proposition A.13. P(ρ̂Û) has a unique fixed point.

Proof of Step 4—Proposition A.13. The existence of the fixed point follows directly from Brouwer’s

fixed-point theorem. To show uniqueness, observe that if there were two fixed points Û1 < Û2,

by definition, we would have that P(ρ̂Û1) = ρ̂Û1 < ρ̂Û2 = P(ρ̂Û2) and P(ρ̂Û) would be strictly

increasing. By Step 4 of Proposition A.12, this is a contradiction.

A.3 Proof of Proposition 2

Proof. We prove each equilibrium property separately.

1. Using the recursive definition of the value function, we have

Ŵ(ŵ) = E

[ˆ τm∗

0
e−ρ̂t(eŵt − ρ̂Û)dt|ŵ0 = ŵ

]

Ĵ(ŵ) = E

[ˆ τm∗

0
e−ρ̂t(1 − eŵt)dt|ŵ0 = ŵ

]

where τm∗ is the nontrivial Nash equilibrium of the game between the firm and the worker.

Summing up the previous two equations, we have

Ŝ(ŵ) := Ŵ(ŵ) + Ĵ(ŵ) = Eŵ

[ˆ τm∗

0
e−ρ̂t(1 − ρ̂Û)dt

]
= (1 − ρ̂Û)T (ŵ, ρ̂).

Now, we show that 1 > ρ̂Û > B̃ by contradiction. Assume that ρ̂Û ≤ B̃ < 1. Using the free

entry condition and worker optimality, we have that θ̂(ŵ) ≥ 0 and Ŵ(ŵ) ≥ 0 for all ŵ; thus, the

product is also nonnegative at ŵ∗ and

ρ̂Û = B̃ + max
ŵ

f (θ̂(ŵ))Ŵ(ŵ) ≥ B̃ =⇒ ρ̂U ≥ B̃,

So, we have that ρ̂Û = B̃ < 1. Then, we have that maxŵ f (θ̂(ŵ))Ŵ(ŵ) = 0 and, therefore,

f (θ̂(ŵ))Ŵ(ŵ) = 0 ∀ŵ. By weakly dominated strategies, we have that (log(ρ̂Û), 0) = (log(B̃), 0) ⊂
Z j ∩ Zh. Thus, for any ŵ ∈ (log(B̃), 0), we have that ( Ĵ(ŵ), Ŵ(ŵ)) > (0, 0) and using the free

entry condition f (θ̂(ŵ))Ŵ(ŵ) > 0. Thus, a contradiction. Assume instead that ρ̂Û ≥ 1. Then,

T (ŵ∗, ρ̂) = 0 for all ŵ since Ŝ(ŵ) is nonnegative and 0 = Ŝ(ŵ) ≥ ( Ĵ(ŵ), Ŵ(ŵ)) ≥ 0 ∀ŵ and

maxŵ f (θ̂(ŵ))Ŵ(ŵ) = 0 with the free entry condition. With these argument, we have that ρ̂Û =

A19



B̃ + maxŵ f (θ̂(ŵ))Ŵ(ŵ) = B̃ < 1, and we have the contradiction.

2. To show this, we first show that Ĵ(ŵ) > 0 for all ŵ ∈ (log(ρ̂Û), 0). Let

τ(w−,0) = inf
t
{t : ŵt /∈ (log(ρ̂Û), 0)}.

By optimality of the firm,

Ĵ(ŵ) = Eŵ

[ˆ τm∗

0
e−ρ̂t(1 − eŵt)dt

]
≥ Eŵ

[ˆ min{τ(log(ρ̂Û),0),τ
m∗}

0
e−ρ̂t(1 − eŵt)dt

]
> 0.

Thus, there is an open set around the optimally chosen starting wage ŵ that lies entirely within the
continuation region s.t. Ĵ(ŵ) > 0, θ̂(ŵ) > 0, and Ĵ(ŵ)− K̂θ̂(ŵ)α = 0. Therefore,

arg max
ŵ

{
f (θ̂(ŵ))Ŵ(ŵ)

}
= arg max

ŵ


(

Ĵ(ŵ)

K̃

) 1−α
α

Ŵ(ŵ)

 = arg max
ŵ

{
Ĵ(ŵ)1−αŴ(ŵ)α

}
.

Since Ŵ(ŵ) = η(ŵ)Ŝ(ŵ) and Ĵ(ŵ) = (1 − η(ŵ))Ŝ(ŵ) and Ŝ(ŵ) = (1 − ρ̂Û)T (ŵ, ρ̂),

arg max
ŵ

{
f (θ̂(ŵ))Ŵ(ŵ)

}
= arg max

ŵ

{
Ĵ(ŵ)1−αŴ(ŵ)α

}
= arg max

ŵ

{
(1 − η(ŵ))1−αη(ŵ)αT (ŵ, ρ̂)

}
.

Taking first-order conditions, η′(ŵ∗)
(

α
η(ŵ∗) − 1−α

1−η(ŵ∗)

)
= − T ′

ŵ(ŵ
∗,ρ̂)

T (ŵ∗,ρ̂) . We now show the following

claim: There exists a unique solution to

max
ŵ

Ŵ(ŵ)α Ĵ(ŵ)1−α. (A.22)

We divide this proof into 4 steps.

• The following result holds:

arg max
ŵ

Ŵ(ŵ)α Ĵ(ŵ)1−α = arg max
ŵ∈[ŵ−,ŵ+]

α log
(
Ŵ(ŵ)

)
+ (1 − α) log

(
Ĵ(ŵ)

)
.

As we show below, for σ2 > 0 we have −∞ < ŵ− < log(ρ̂Û) < 0 < ŵ+ < ∞. Now, we show

that there exists a ŵ ∈ (ŵ−, ŵ+) such that Ŵ(ŵ) > 0 and Ĵ(ŵ) > 0 by constradiction. Assume the

opposite inequalities hold. Then, since the values satisfy Ŵ(ŵ) ≥ 0 and Ĵ(ŵ) ≥ 0, it must be the

case that Ŵ(ŵ) = Ĵ(ŵ) = 0. Replacing these equalities into the definition of the values, we obtain

(ρ + δ)Ŵ(ŵ) = eŵ − ρ̂Û, (ρ + δ) Ĵ(ŵ) = 1 − eŵ, (A.23)
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which results in a contradiction since the values that satisfy (A.23) are positive for any ŵ ∈
(log(ρ̂Û), 0). Thus, we can restrict the domain of ŵ to [ŵ−, ŵ+] in problem (A.22).

• Problem (A.22) attains a maximum. This result follows from the Weierstrass Theorem since

the set [ŵ−, ŵ+] is compact and the objective function is the composition and sum of two continuous

value functions.

• The functions Ĵ(ŵ) and Ŵ(ŵ) have unique global maxima ŵ∗j < ŵ∗h. We will show that

ŵ∗j = arg maxŵ Ĵ(ŵ) is unique. The proof for Ŵ(ŵ) is similar. Assume, by contradiction, that there

exist at least two global maxima at ŵ∗j < ŵ∗∗j (from the argument above, we conclude that these

maxima cannot occur at the boundary of the game’s continuation set). Without loss of generality,

assume they are consecutive. The HJB equation within the game’s continuation set is given by

(ρ̂ + δ) Ĵ(ŵ) = 1− eŵ − γ̂ Ĵ′(ŵ) + σ2

2 Ĵ′′(ŵ). Since the function is smooth, at the two optima, we have

(ρ̂ + δ) Ĵ(ŵ∗j) + eŵ∗j − 1 =
σ2

2
Ĵ′′(ŵ∗j),

(ρ̂ + δ) Ĵ(ŵ∗∗j) + eŵ∗∗j − 1 =
σ2

2
Ĵ′′(ŵ∗∗j),

with Ĵ(ŵ) ≤ Ĵ(ŵ∗j) for all ŵ ∈ (ŵ∗j, ŵ∗∗j). There are two cases to consider. First, Ĵ(ŵ) = Ĵ(ŵ∗j)

for all ŵ ∈ (ŵ∗j, ŵ∗∗j). Here, we have a contradiction since Ĵ(ŵ) is constant in the interval, thus

Ĵ′(ŵ) = Ĵ′′(ŵ) = 0 for all ŵ ∈ (ŵ∗j, ŵ∗∗j) and (ρ̂ + δ) Ĵ(ŵ∗j) + eŵ − 1 = 0, ∀ŵ ∈ (ŵ∗j, ŵ∗∗j), which

is not constant. Next, assume that the function is not constant. Then, since Ĵ(ŵ) is continuous

and the set [ŵ∗j, ŵ∗∗j] is compact, the function has a minimum at some ŵmin j < ŵ∗∗j satisfying

Ĵ(ŵmin j) < Ĵ(ŵ∗∗j) and eŵmin j − 1 < eŵ∗∗j − 1. By definition of minimum, Ĵ′′(ŵmin j) ≥ 0. Therefore,

combining the previous inequalities, we have

0 ≤ σ2

2
Ĵ′′(ŵmin j) = (ρ̂ + δ) Ĵ(ŵmin j) + eŵmin j − 1 < (ρ̂ + δ) Ĵ(ŵ∗∗j) + eŵ∗∗j − 1 =

σ2

2
Ĵ′′(ŵ∗∗j).

Since the function is concave near a maximum, we have a contradiction. We can follow similar

steps to rule multiple local maxima. Finally, it is easy to show that ŵ∗j < ŵ∗h.

• There exists a unique arg maxŵ∈[ŵ∗j,ŵ∗h] α log
(
Ŵ(ŵ)

)
+ (1− α) log

(
Ĵ(ŵ)

)
. We first show that

Ŵ(ŵ) is strictly log-concave ∀ŵ ∈ (ŵ−, ŵ∗h). The proof that shows that Ĵ(ŵ) is log-concave is

similar. Applying L’Hôpital’s rule, we have that limŵ↓ŵ−
Ŵ ′(ŵ)

Ŵ(ŵ)
= limŵ↓ŵ−

Ŵ ′′(ŵ)

Ŵ ′(ŵ)
. Recall that (δ +

ρ̂)Ŵ(ŵ) = eŵ − ρ̂Û − γ̂Ŵ ′(ŵ)+ σ2

2 Ŵ ′′(ŵ). Taking the limit ŵ ↓ ŵ− and using the border conditions

Ŵ(ŵ−) = Ŵ ′(ŵ−) = 0, we have that 0 < ρ̂Û − eŵ−
= σ2

2 Ŵ ′′(ŵ). Therefore, limŵ↓ŵ−
Ŵ ′′(ŵ)

Ŵ ′(ŵ)
= ∞.
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It is easy to check that Ŵ ′(ŵ)

Ŵ(ŵ)
has a vertical asymptote when ŵ ↓ ŵ− and, therefore, it must be

decreasing near ŵ− from the right. Let ŵ be a wage-to-productivity ratio close to ŵ− such that
Ŵ ′(ŵ)

Ŵ(ŵ)
> 0 and

(
Ŵ ′(ŵ)

Ŵ(ŵ)

)′
< 0. Since Ŵ(ŵ) has a single maximum ŵ∗h, Ŵ ′(ŵ)

Ŵ(ŵ)
is positive for all

ŵ ∈ [ŵ, ŵ∗h) and Ŵ ′(ŵ)

Ŵ(ŵ)
= 0 when evaluated at ŵ = ŵ∗h. Now, we show that Ŵ ′(ŵ)

Ŵ(ŵ)
is decreasing

for all ŵ ∈ [ŵ, ŵ∗h). Using the worker’s HJB equation and the corresponding smooth-pasting and

value-matching conditions, we have

Ŵ ′(ŵ) =
2
σ2

ˆ ŵ

ŵ−

[
(δ + ρ̂)Ŵ(x)− (ex − ρ̂Û)

]
dx +

2γ̂

σ2 Ŵ(ŵ).

Dividing both sides by Ŵ(ŵ),

Ŵ ′(ŵ)

Ŵ(ŵ)
=

2
σ2

´ ŵ
ŵ−
[
(δ + ρ̂)Ŵ(x)− (ex − ρ̂Û)

]
dx

Ŵ(ŵ)
+

2γ̂

σ2 .

Taking the derivative w.r.t. ŵ, we obtain

(
Ŵ ′(ŵ)

Ŵ(ŵ)

)′
=

2
σ2

[
(ρ̂ + δ)− (eŵ − ρ̂Û)

Ŵ(ŵ)

]
+

2γ̂

σ2
Ŵ ′(ŵ)

Ŵ(ŵ)
−
(

Ŵ ′(ŵ)

Ŵ(ŵ)

)2

.

Define the following function ϕ(ŵ − ŵ) ≡ Ŵ ′(ŵ)

Ŵ(ŵ)
. Then,

ϕ′(ŵ − ŵ) =
2
σ2

[
(ρ̂ + δ)− (eŵ − ρ̂Û)

Ŵ(ŵ)

]
+

2γ̂

σ2 ϕ(ŵ − ŵ)− ϕ(ŵ − ŵ)2.

Given this, the goal is to show ϕ′(ŵ− ŵ) < 0. Let t ≡ ŵ− ŵ, then ϕ′(t) = 2
σ2

[
(ρ̂ + δ)− (et+ŵ−ρ̂Û)

Ŵ(t+ŵ)

]
+

2γ̂
σ2 ϕ(t)− ϕ(t)2. Next, we define F(t) ≡ 2

σ2

[
(ρ̂ + δ)− (et+ŵ−ρ̂Û)

Ŵ(t+ŵ)

]
. Thus, we have that the derivative

of the log of the worker’s value function satisfies the Ricatti equation ϕ′(t) = F(t) + 2γ̂
σ2 ϕ(t)− ϕ(t)2,

with initial condition ϕ(0) > 0, ϕ′(0) < 0. Define T = ŵ∗h − ŵ, then ϕ(T) = 0 (which follows from

ŵ∗h being an interior maximum). Now, we show that ϕ′(t) < 0 for all t ∈ (0, T). Assume that this

is not the case and there exists a t∗ ∈ (0, T) s.t. ϕ′(t∗) ≥ 0. Without loss of generality, let t∗ be

inside the first interval s.t. ϕ′(t) ≥ 0. Then, if we plot Ht(ϕ) := F(t) + 2γ̂
σ2 ϕ(t)− ϕ(t)2, there exists a

(t∗, ϕ∗) > (0, 0) s.t. Ht∗(ϕ∗) ≥ 0. From Figure A2, since ϕ′(0) < 0 with ϕ(0) arbitrary large, we can

see that limt→∞ ϕ(t) ≥ ϕ∗ > 0 and, therefore, ϕ(T) > 0, which contradicts the terminal condition

ϕ(T) = 0. Thus, ϕ′(t) < 0 for all t ∈ (0, T) and log(Ŵ(ŵ)) is a concave function ∀ŵ ∈ (ŵ∗j, ŵ∗h).

Since log
(
Ŵ(ŵ)

)
and log

(
Ĵ(ŵ)

)
are strictly concave ∀ŵ ∈ [ŵ∗j, ŵ∗h] and the sum of strictly
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FIGURE A2. PHASE LINE FOR ϕ(t)

Ht(ϕ)

ϕϕ∗

limt→∞ ϕ(t) > 0

1

concave functions is strictly concave, arg maxŵ∈[ŵ∗j,ŵ∗h] α log
(
Ŵ(ŵ)

)
+ (1 − α) log

(
Ĵ(ŵ)

)
exists

and is unique.

3. This step follows directly from workers’ and firms’ optimality conditions.

4. To show that Ẑh and Ẑ j are connected, assume they are not. Without loss of generality,

assume that Ẑh = {ŵ : ŵ > ŵ−} ∪ (a, b) with a < b < w−. Then, since ŵ− ≤ ρ̂Û, it must

be the case that for all ŵ ∈ (a, b) , we have (eŵ − ρ̂Û) < 0 for all ŵ ∈ (a, b), and Ŵ(ŵ) =

Eŵ

[´ τẐh∩Ẑ j

0 e−(ρ̂+δ)t(ewt − ρ̂Û)dt
]
< 0 for all ŵ ∈ (a, b) due to continuity of Brownian motions.

Since Ŵ(ŵ) ≥ 0, we have a contradiction. A similar argument holds for the firm’s continuation set.

We prove that −∞ < ŵ− by contradiction. Assume that −∞ = ŵ−, then

Ŵ(ŵ, ŵ+) := E

[ˆ τ(−∞,ŵ+)∧τδ

0
e−ρ̂t (eŵt − ρ̂Û

)
dt|ŵ0 = ŵ

]
.

Then, since ρ̂Û < eŵ+
, it is easy to show

Ŵ(ŵ, ŵ+) = E

[ˆ τ(−∞,ŵ+)∧τδ

0
e−ρ̂t (eŵt − ρ̂Û

)
dt|ŵ0 = ŵ

]

≤ E

[ˆ ∞

0
e−(ρ̂+δ)t (eŵt − ρ̂Û

)
dt|ŵ0 = ŵ

]
=

ew

ρ̂ + δ + γ̂ − σ2/2
− ρ̂Û

ρ̂ + δ

=
ew

ρ + δ
− ρ̂Û

ρ − γ − σ2/2 + δ

Thus, there exists a small enough ŵ s.t. Ŵ(ŵ, ŵ+) < 0, a contradiction. A similar argument holds
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for the firm’s separation threshold. The smooth pasting conditions are necessary and sufficient for

optimality (Brekke and Øksendal, 1990).

A.4 Proof of Propositions 3, 4, and 5

Define Ẑ = (ŵ−, ŵ+). From Proposition 1, when γ̂ > 0 or σ > 0, we can work with the HJB

conditions

(ρ̂ + δ)Ŵ(ŵ) = eŵ − ρ̂Û − γ̂Ŵ ′(ŵ) +
σ2

2
Ŵ ′′(ŵ) ∀ŵ ∈ Ẑ (A.24)

(ρ̂ + δ) Ĵ(ŵ) = 1 − eŵ − γ̂ Ĵ′(ŵ) +
σ2

2
Ĵ′′(ŵ) ∀ŵ ∈ Ẑ (A.25)

ρ̂Û = B̃ + K̃1−α−1
Ĵ(ŵ∗)

1−α
α Ŵ(ŵ∗)

(1 − α)
dlog Ĵ(ŵ∗)

dŵ
= −α

dlog Ŵ(ŵ∗)
dŵ

,

with the value-matching conditions Ŵ(ŵ−) = Ĵ(ŵ−) = Ŵ(ŵ+) = Ĵ(ŵ+) = 0 and smooth-pasting

conditions Ŵ ′(ŵ−) = Ĵ′(ŵ+) = 0.

Proof of Proposition 3. If γ̂ = σ = 0, conditions (A.24) and (A.25) imply Ŵ(ŵ) = eŵ−ρ̂Û
ρ̂+δ and Ĵ(ŵ) =

1−eŵ

ρ̂+δ . The variation inequalities imply

(ρ̂ + δ)Ŵ(ŵ) = max{0, eŵ − ρ̂Û}, ∀ŵ ∈ R,

(ρ̂ + δ) Ĵ(ŵ) = max{0, 1 − eŵ}, ∀ŵ ∈ R.

Thus, Ŵ(ŵ−) = Ĵ(ŵ+) = 0, ŵ+ = 0 and ŵ− = log
(
ρ̂Û
)
. Since

T (ŵ, ρ̂) =

 (ρ̂ + δ)−1 if ŵ ∈ [ŵ−, ŵ+]

0 otherwise,

and Tŵ(ŵ∗, ρ̂) = 0, we have that the worker’s share of the surplus η(ŵ∗) = α.

Proof of Proposition 4. Let us guess and verify the following solution ŵ∗ = log
(

1+ρ̂Û
2

)
and ŵ− =

ŵ∗ − h and ŵ+ = ŵ∗ + h for a given h. Using a Taylor approximation of the flow profits around ŵ∗

eŵ − ρ̂Û ≈ eŵ∗
(1 + (ŵ − ŵ∗))− ρ̂Û =

1 − ρ̂Û
2

+ eŵ∗
(ŵ − ŵ∗),
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1 − eŵ ≈ 1 − eŵ∗
(1 + (ŵ − ŵ∗)) =

1 − ρ̂Û
2

− eŵ∗
(ŵ − ŵ∗).

We can write the optimality conditions as

(ρ̂ + δ)Ŵ(ŵ) =
1 − ρ̂Û

2
+ eŵ∗

(ŵ − ŵ∗) +
σ2

2
Ŵ ′′(ŵ), ∀ŵ ∈ (w∗ − h, w∗ + h)

(ρ̂ + δ) Ĵ(ŵ) =
1 − ρ̂Û

2
− eŵ∗

(ŵ − ŵ∗) +
σ2

2
Ĵ′′(ŵ), ∀ŵ ∈ (w∗ − h, w∗ + h)

with the border conditions Ŵ(ŵ∗ − h) = Ĵ(ŵ∗ − h) = Ŵ(ŵ∗ + h) = Ĵ(ŵ∗ + h) = 0 and Ŵ ′(ŵ∗ −
h) = Ĵ′(ŵ∗ + h) = 0. Now, we show that we can transform J(x) =

Ĵ(x+ŵ∗)− 1−ρ̂Û
2(ρ̂+δ)

eŵ∗ . A similar

argument applies to the value function of the worker. Making the following transformation

J(x) =
Ĵ(x+ŵ∗)− 1−ρ̂Û

2(ρ̂+δ)

eŵ∗ , and using (A.25)

(ρ̂ + δ)J(x) = −x +
σ2

2
J′′(x).

Thus,

(ρ̂ + δ)W(x) = x +
σ2

2
W ′′(x), (ρ̂ + δ)J(x) = −x +

σ2

2
J′′(x) ∀x ∈ (−h, h)

Defining Φ =
1−ρ̂Û

2
eŵ∗ = 1−ρ̂Û

1+ρ̂Û
> 0, it is easy to show that W(h) = J(h) = W(−h) = J(−h) = − Φ

ρ̂+δ

and W ′(−h) = J′(h) = 0. Thus, W(x) = J(−x). Given that this problem is symmetric, we verify

the guess of symmetry of the Ss bands and 1
2W ′(0) = − 1

2 J′(−0). The latter property implies that

w∗ satisfies the proposed Nash bargaining solution.

Now, we show that h = ω(φ)Φ with φ =
√

2(ρ̂ + δ)/σ. Note that W(x) = J(−x). Thus, we

can only focus on W(x) using the smooth pasting condition evaluated at −h. The solution to this

system of differential equations is given by W(x) = Aeφx + Be−φx + x
ρ̂+δ with border conditions

W(h) = W(−h) = − Φ
ρ̂+δ and W ′(−h) = 0, where φ =

√
2(ρ̂ + δ)/σ. Writing the value-matching

conditions

Aeφh + Be−φh +
h

ρ̂ + δ
= − Φ

ρ̂ + δ
; Ae−φh + Beφh − h

ρ̂ + δ
= − Φ

ρ̂ + δ
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Solving for A and B,

A = − 1
ρ̂ + δ

e−φh (−Φ + h) + eφh (h + Φ)

e2φh − e−2φh ; B =
1

ρ̂ + δ

eφh (−Φ + h) + e−φh (h + Φ)

e2φh − e−2φh

Therefore,

W(x) = − 1
ρ̂ + δ

e−φh (−Φ + h) + eφh (h + Φ)

e2φh − e−2φh eφx +
1

ρ̂ + δ

eφh (−Φ + h) + e−φh (h + Φ)

e2φh − e−2φh e−φx +
x

ρ̂ + δ

Taking the derivative, evaluating in x = −h and imposing W ′(−h) = 0, we obtain

−Φ(e−2φh + e2φh − 2) =
1
φ
(e2φh − e−2φh)− 1

2φ
2φh

(
e2φh + e−2φh + 2

)
. (A.26)

It would be useful to express equation (A.26) using sinh(x) = ex−e−x

2 and cosh(x) = ex+e−x

2 . Using

the hyperbolic functions,

−Φ2φ (cosh(2φh)− 1) = 2 sinh(2φh)− φ2h (cosh(2φh) + 1) .

Next, we change variables with q ≡ 2φh and define q as the implicit solution of

−2Φφ (cosh(q)− 1) + x (cosh(q) + 1) = 2 sinh(q).

Thus, h = q(2Φφ)
2φ . Let b = 2Φφ > 0, then we can express the function x(·) as the solution of

b = − 2 sinh(q(b))−q(b)(cosh(q(b))+1)
(cosh(q(b))−1) . Notice that if we define f (q) = − 2 sinh(q)−q(cosh(q)+1)

(cosh(q)−1) , the following

properties about f (q) hold:

1. limq→0 f (q) = 0 and limq→∞ f (q) = ∞.

2. f (q) is increasing and convex, with limq→0 f ′(q) = 1/3 and limq→∞ f ′(q) = 1.

3. dlog( f (q))
dlog(q) > 1.

Given these properties, we can write h(φ, Φ) = f−1(2φΦ)
2φ and show the following properties of

h(φ, Φ)

1. h(φ, Φ) is increasing in Φ: Since f−1(·) is increasing, we have the result.

2. h(φ, Φ) is decreasing in φ: Taking the derivative of h(φ, Φ) = f−1(2φΦ)
2φ with respect to φ and
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operating

∂h(φ, Φ)

∂φ
=

d f−1(q)
dq

∣∣∣∣∣
q=2φΦ

2Φ
2φ

− f−1(2φΦ)

2φ2 =
f−1(2φΦ)

2φ2

 d f−1(q)
dq

∣∣∣∣∣
q=2φΦ

2φΦ
f−1(2φΦ)

− 1


=

f−1(2φΦ)

2φ2

[
dlog(q)

dlog( f (q))

∣∣∣∣
x=2φΦ

2φΦ
f−1(2φΦ)

− 1

]
< 0.

3. limφ↓0 h(φ, Φ) = 3Φ and limφ→∞ h(φ, Φ) = Φ: Applying L’Hopital’s rule and using proper-

ties of the derivative of the inverse,

lim
φ→∞

h(φ, Φ) = lim
φ→∞

f−1(2φΦ)

2φ
= lim

φ→∞

1
f ′(2φΦ)

Φ = Φ

lim
φ↓0

h(φ, Φ) = lim
φ↓0

f−1(2φΦ)

2φ
= lim

φ↓0

1
f ′(2φΦ)

Φ = 3Φ

4. h(φ, Φ) = ω(2φΦ)Φ: Define ω(z) = f−1(z)
z , then it is easy to see that h(φ, Φ) = ω(2φΦ)Φ.

Moreover, from property 2 and 3, ω(z) is decreasing with limz↓0 ω(z) = 3 and limz→∞ ω(z) =

1. Moreover, it is easy to show with similar arguments that ω(2φΦ)Φ is increasing in Φ and

ω(2φΦ)φ is increasing in φ.

Now, we can compute η(ŵ∗) and T (ŵ∗, ρ̂). Note that we can define T(x) = T (x + ŵ∗, ρ̂),

which solves (ρ̂ + δ)T(x) = 1 + σ2

2 T′′(x), with T(±h(φ, Φ)) = 0. The solution to this differential

equation is given by T(x) =
1− eφx+e−φx

eφh+e−φh

ρ̂+δ . Thus, T′(0) = 0 and η(ŵ∗) = α. Finally, using the property

that sech(x) = 2
ex+e−x , we have T (ŵ∗, ρ̂) = 1−sech(φω(2φΦ)Φ)

ρ̂+δ .

Proof of Proposition 5. Now, we take the limit σ ↓ 0. The equilibrium conditions in this case are

(ρ̂ + δ)Ŵ(ŵ) = eŵ − ρ̂Û − γ̂Ŵ ′(ŵ) ∀ŵ ∈ Ẑ j ∩ Zh

(ρ̂ + δ) Ĵ(ŵ) = 1 − eŵ − γ̂ Ĵ′(ŵ) ∀ŵ ∈ Ẑ j ∩ Zh

(1 − α)
dlog Ĵ(ŵ∗)

dŵ
= −α

dlog Ŵ(ŵ∗)
dŵ

with the value matching and smooth pasting conditions Ŵ(ŵ−) = Ĵ(ŵ−) = Ŵ(ŵ+) = Ĵ(ŵ+) = 0

and Ŵ ′(ŵ−) = Ĵ′(ŵ+) = 0. Without idiosyncratic shocks and γ > 0 the upper Ss band is not active.

Thus, we discard the optimality condition for ŵ+. In this case, the stopping time is a deterministic
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function; hence, it is easier to work with the sequential formulation.

Ŵ(ŵ) = max
T

ˆ T

0
e−(ρ̂+δ)s (eŵ−γ̂s − ρ̂Û

)
ds (A.27)

Ĵ(ŵ) =

ˆ T(ŵ)

0
e−(ρ̂+δ)s (1 − eŵ−γ̂s)ds. (A.28)

In equation (A.28), T(ŵ) is the optimal policy of the worker. Taking the first order conditions with

respect to T(ŵ), eŵ−γ̂T(ŵ) = ρ̂Û. Solving this equation, T(ŵ) =
ŵ−log(ρ̂Û)

γ̂ . Thus, if ŵ = ŵ∗, we

have that ŵ− = ŵ∗ − γ̂T(ŵ∗) satisfies ŵ− = log(ρ̂Û). Taking the derivatives of Ŵ(ŵ) and Ĵ(ŵ),

and using the envelope condition for Ŵ ′(ŵ), we have

Ŵ ′(ŵ) =

ˆ T(w)

0
e−(ρ̂+δ)s (eŵ−γ̂s)ds, (A.29)

Ĵ′(ŵ) = −
ˆ T(w)

0
e−(ρ̂+δ)s (eŵ−γ̂s)ds + e−(ρ̂+δ)T(ŵ)

(
1 − eŵ−γ̂T(ŵ)

)
T′(ŵ)︸ ︷︷ ︸
= 1/γ̂

. (A.30)

From equations (A.29) and (A.30), we get the Nash bargaining solution

−α

´ T∗

0 e−(ρ̂+δ)s (eŵ∗−γ̂s)ds´ T∗
0 e−(ρ̂+δ)s

(
eŵ∗−γ̂s − ρ̂Û

)
ds

= (1 − α)

[
− ´ T∗

0 e−(ρ̂+δ)s (eŵ∗−γ̂s)ds + e−(ρ̂+δ)T∗ (1−ρ̂Û)
γ̂

]
´ T∗

0 e−(ρ̂+δ)s (1 − eŵ∗−γ̂s)ds
(A.31)

Define Ω(a, T∗) := 1−e−aT∗

a . Operating,

α

ˆ T∗

0
e−(ρ̂+δ)s

(
1 − eŵ∗−γ̂s

)
ds = (1 − α)

ˆ T∗

0
e−(ρ̂+δ)s

(
eŵ∗−γ̂s − ρ̂Û

)
ds

[
1 − e−(ρ̂+δ)T∗

(1 − ρ̂Û)

γ̂
´ T∗

0 e−(ρ̂+δ)s (eŵ∗−γ̂s)ds

]
⇐⇒

(
α + (1 − α)ρ̂Û

)
Ω(ρ̂ + δ, T∗) = eŵ∗

Ω(ρ̂ + δ + γ̂, T∗)− (1 − α)e−(ρ̂+δ)T∗
(1 − ρ̂Û)

γ̂

[
1 − ρ̂Û

Ω(ρ̂ + δ, T∗)
eŵ∗Ω(ρ̂ + δ + γ̂, T∗)

]

Define T̃ = γ̂T∗ and Ω(a, T∗) := 1−e−aT∗

a = γ̂−1Ω( a
γ̂ , T̃). Then, the policy (T∗, ŵ∗) solves eŵ∗−T̃ =

ρ̂Û and

(
α + (1 − α)ρ̂Û

)
γ̂−1Ω

(
ρ̂ + δ

γ̂
, T̃
)
= eŵ∗

γ̂−1Ω
(

ρ̂ + δ

γ̂
+ 1, T̃

)
− (1 − α)e−

ρ̂+δ
γ̂ T̃(1 − ρ̂Û)

γ̂

1 − ρ̂Û
Ω
(

ρ̂+δ
γ̂ , T̃

)
eŵ∗Ω

(
ρ̂+δ

γ̂ + 1, T̃
)
 .

Therefore, the optimal stopping is given by

α + (1 − α)ρ̂Û
ρ̂Û

= eT̃
Ω
(

ρ̂+δ
γ̂ + 1, T̃

)
Ω
(

ρ̂+δ
γ̂ , T̃

) −
(1 − α)(1 − ρ̂Û)

[
1 − ρ̂+δ

γ̂ Ω
(

ρ̂+δ
γ̂ , T̃

)]
ρ̂ÛΩ

(
ρ̂+δ

γ̂ , T̃
)

1 −
Ω
(

ρ̂+δ
γ̂ , T̃

)
eT̃Ω

(
ρ̂+δ

γ̂ + 1, T̃
)
 (A.32)
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Now, we show the properties satisfied by T̃
(

α+(1−α)ρ̂Û
ρ̂Û

, ρ̂+δ
γ̂ , (1−α)(1−ρ̂Û)

ρ̂Û

)
. Let us define the

function

f (a, b, c) := ea 1 − e−(1+b)a

1 − e−ba
b

b + 1
− cb

e−ba

1 − e−ba

[
1 − b + 1

b
1 − e−ba

ea − e−ba

]
.

Observe that with this function:

α + (1 − α)ρ̂Û
ρ̂Û

= f
(

T̃
(

α + (1 − α)ρ̂Û
ρ̂Û

,
ρ̂ + δ

γ̂
,
(1 − α)(1 − ρ̂Û)

ρ̂Û

)
,

ρ̂ + δ

γ̂
,
(1 − α)(1 − ρ̂Û)

ρ̂Û

)
.

The following properties are easy to show:

1. f (a, b, c) is increasing in a.

2. If a, c > 0, b → ∞, then f (a, b, c) → ea : To see this property, taking the limit

lim
a>0,b→∞,c∝b

[
ea 1 − e−(1+b)a

1 − e−ba
b

b + 1
− cb

e−ba

1 − e−ba

[
1 − b + 1

b
1 − e−ba

ea − e−ba

]]

= ea lim
a>0,b→∞

1 − e−(1+b)a

1 − e−ba︸ ︷︷ ︸
= 1

lim
a>0,b→∞

b
b + 1︸ ︷︷ ︸

= 1

− lim
a>0,b→∞

cb
e−ba

1 − e−ba︸ ︷︷ ︸
= 0

1 − lim
b→∞

b + 1
b︸ ︷︷ ︸

= 1

lim
a>0,b→∞

1 − e−ba

ea − e−ba︸ ︷︷ ︸
= e−a

 = ea.

3. If a, c > 0 and b → 0 then f (a, b, c) → ea−1−c(1− a
ea−1 )

a : To see this property, taking the limit

lim
a>0,b→0

[
ea 1 − e−(1+b)a

1 − e−ba
b

b + 1
− cb

e−ba

1 − e−ba

[
1 − b + 1

b
1 − e−ba

ea − e−ba

]]

= ea(1 − e−a) lim
a>0,b→0

b
1 − e−ba︸ ︷︷ ︸

= 1/a

−c lim
a>0,b→0

b
1 − e−ba︸ ︷︷ ︸

= 1/a

1 − 1
ea − 1

lim
b→∞

1 − e−ba

b︸ ︷︷ ︸
= a

 =
ea − 1 − c

(
1 − a

ea−1

)
a

.

4. ea ≥ f (a, b, c) ≥ ea−1−c(1− a
ea−1 )

a where the upper bound is reached when b → ∞ and the lower

bound when b ↓ 0.

5. Duration of the match: It is easy to show that T (ŵ∗, ρ̂) = 1−e
− ρ̂+δ

γ̂ T̃(·)

ρ̂+δ .

6. The worker’s share is given by

η(ŵ∗) =
eγ̂T∗(·)+log(ρ̂Û)

´ T∗

0 e−(ρ̂+δ+γ̂)t dt − ρ̂Û
´ T∗

0 e−(ρ̂+δ)t dt

(1 − ρ̂Û)
´ T∗

0 e−(ρ̂+δ)t dt
=

eT̃(·) 1−e
−
(

1+ ρ̂+δ
γ̂

)
T̃(·)

1−e−
ρ̂+δ

γ̂ T̃(·)
ρ̂+δ

ρ̂+δ+γ̂ − 1

1 − ρ̂Û
ρ̂Û (A.33)

With these properties, we can characterize the equilibrium policies:
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1. T̃
(

α+(1−α)ρ̂Û
ρ̂Û

, ρ̂+δ
γ̂ , (1−α)(1−ρ̂Û)

γ̂ρ̂Û

)
is increasing in the first argument.

2. If γ̂ → 0, then ρ̂+δ
γ̂ → ∞ and lim(ρ̂+δ)/γ̂→∞ T̃(·) = log

(
α+(1−α)ρ̂Û

ρ̂Û

)
. The expected discounted

duration in the limit is equal to limγ̂→0 T (ŵ∗, ρ̂) = 1
ρ̂+δ . The worker’s share in the limit is

equal to

η(ŵ∗) =
eT̃(·) 1−e

−(1+ ρ̂+δ
γ̂ )T̃(·)

1−e
− ρ̂+δ

γ̂ T̃(·)
ρ̂+δ

ρ̂+δ+γ̂ − 1

1 − ρ̂Û
ρ̂Û =

eT̃(·) − 1
1 − ρ̂Û

ρ̂Û =

α+(1−α)ρ̂Û
ρ̂Û

− 1

1 − ρ̂Û
ρ̂Û = α

3. If γ̂ → ∞, then ρ̂+δ
γ̂ → 0, which provides the same T̃(·) as ρ̂ + δ → 0. As we have shown

before, under this limit, T̃(·) converges to the implicit solution given by

α + (1 − α)ρ̂Û
ρ̂Û

=
eT̃(·) − 1 − (1−α)(1−ρ̂Û)

ρ̂Û

(
1 − T̃(·)

eT̃(·)−1

)
T̃(·) .

Given the convergence, we now show the limit for η(ŵ∗) since clearly T (ŵ∗, ρ) → 0. Let us
depart from equation (A.31)

−α

´ T∗

0 e−(ρ̂+δ)s (eŵ∗−γ̂s)ds´ T∗
0 e−(ρ̂+δ)s

(
eŵ∗−γ̂s − ρ̂Û

)
ds

= (1 − α)

[
− ´ T∗

0 e−(ρ̂+δ)s (eŵ∗−γ̂s)ds + e−(ρ̂+δ)T∗ (1−ρ̂Û)
γ̂

]
´ T∗

0 e−(ρ̂+δ)s (1 − eŵ∗−γ̂s)ds

Taking the limit as ρ̂ + δ → 0

α

ˆ T∗

0
(1 − ewt )dt = (1 − α)

ˆ T∗

0

(
ewt − ρ̂Û

)
dt − (1 − α)(1 − ρ̂Û)

γ̂

´ T∗

0
(
ewt − ρ̂Û

)
dt´ T∗

0 ewt dt
.

Operating and using the occupancy measure

α + (1 − α)ρ̂Û +
(1 − α)(1 − ρ̂Û)

γ̂T∗

´ T∗
0 ewt dt

T∗ − ρ̂Û
´ T∗

0 ewt dt
T∗

=

´ T∗

0 ewt dt
T∗

It is easy to check that

α + (1 − α)ρ̂Û +
1 − α

γ̂T∗
E[eŵ]− ρ̂Û

E[eŵ]
(1 − ρ̂Û) = E[eŵ].

From (A.33), since ρ̂ + δ → 0, we have that η(ŵ∗) = E[eŵ]−ρ̂Û
1−ρ̂Û

. Combining these steps yields

the desired result.
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B Proofs for Section 3: Aggregate Shocks with Wage-Rigidity-Induced

Job Separations

B.1 Proof of Proposition 6: CIR of Employment with Flexible Entry Wage

We divide the proof of Proposition 6 into three propositions. Let gh(∆z) and gu(∆z) be the dis-

tributions of ∆z for employed and unemployed workers, respectively. The support of gh(∆z) is

[−∆−, ∆+], where ∆− := ŵ∗ − ŵ− and ∆+ := ŵ+ − ŵ∗. Denote by Eh[·] and Eu[·] the expectation

operators under gh(∆z) and gu(∆z), respectively.

Proposition B.1. Given steady-state policies (ŵ−, ŵ∗, ŵ+) and distributions (gh(∆z), gu(∆z)), the CIR

is given by

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

ˆ ∞

−∞
mE ,u(∆z, ζ)gu(∆z + ζ)d∆z,

where the value functions mE ,h(∆z) and mE ,u(∆z, ζ) are defined as:

mE ,h(∆z) = E

[ˆ τm

0
(1 − Ess)dt + mE ,u(0, 0)

∣∣∣∣∣∆z0 = ∆z

]
, (B.1)

mE ,u(∆z, ζ) = E

[ˆ τu(ζ)

0
(−Ess)dt + mE ,h(−ζ)

∣∣∣∣∣∆z0 = ∆z

]
. (B.2)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

ˆ ∞

−∞
mE ,u(∆z, 0)gu(∆z)d∆z.

with τu(ζ) being distributed according to a Poisson process with arrival rate f (θ̂(ŵ∗ − ζ)).

Proof. We define the cumulative impulse response of aggregate employment to an aggregate TFPR

shock as

CIRE (ζ) =
ˆ ∞

0

ˆ ∞

−∞

(
gh(∆z, ζ, t)− gh(∆z)

)
d∆z dt.

Note that Et =
´ ∞
−∞ gh(∆z, ζ, t)d∆z is a function of ζ since aggregate shocks affect net flows into

employment. The proof proceeds in three steps. Step 1 rewrites the CIR as the integral over time

of two value functions, one for employed and unemployed workers, up to a finite time T . Step

2 expresses the CIR as T → ∞. Step 3 uses the equivalence of the combined Dirichlet-Poisson

problem (i.e., the mapping between the sequential problem and the corresponding HJB equations

and boundary conditions).
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Step 1. Here, we follow a recursive representation for the CIR. The CIR satisfies

CIRE (ζ) =
ˆ ∞

−∞
lim
T →∞

[
mE ,h(∆z, T )gh(∆z + ζ) + mE ,u(∆z, T )gu(∆z + ζ)

]
d∆z,

where we defined

mE ,h(∆z0, T ) :=
ˆ T

0

[ˆ ∞

−∞

[
(1 − Ess) gh(∆z, t|∆z0, h) + (−Ess)gu(∆z, t|∆z0, h)

]
d∆z dt

]
,

mE ,u(∆z0, ζ, T ) :=
ˆ T

0

[ˆ ∞

−∞

[
(1 − Ess) gh(∆z, ζ, t|∆z0, u) + (−Ess)gu(∆z, ζ, t|∆z0, u)

]
d∆z dt

]
.

Proof of Step 1. Following Baley and Blanco (2022), it can be shown that

CIRE (ζ) =
ˆ ∞

0

ˆ ∞

−∞

(
gh(∆z, ζ, t)− gh(∆z)

)
d∆z dt

=

ˆ ∞

−∞
lim
T →∞

mE ,h(∆z, T )gh(∆z + ζ)d∆z +
ˆ ∞

−∞
lim
T →∞

mE ,u(∆z, ζ, T )gu(∆z + ζ)d∆z (B.3)

where we define

mE ,h(∆z0, T ) ≡
ˆ T

0

[ˆ ∞

−∞

[
(1 − Ess) gh(∆z, t|∆z0, h) + (−Ess)gu(∆z, t|∆z0, h)

]
d∆z dt

]
mE ,u(∆z0, ζ, T ) ≡

ˆ T

0

[ˆ ∞

−∞

[
(1 − Ess) gh(∆z, ζ, t|∆z0, u) + (−Ess)gu(∆z, ζ, t|∆z0, u)

]
d∆z dt

]
.

Step 2. The CIR satisfies

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

ˆ ∞

−∞
mE ,u(∆z, ζ)gu(∆z + ζ)d∆z

and the value functions mE ,h(∆z0) and mE ,u(∆z0, ζ) satisfy the following HJB and border conditions:

0 = 1 − Ess − (γ + χ)
dmE ,h(∆z)

d∆z
+

σ2

2
d2mE ,h(∆z)

d∆z2 + δ(mE ,u(0, 0)− mE ,h(∆z)), (B.4)

0 = −Ess − (γ + χ)
dmE ,u(∆z, ζ)

d∆z
+

σ2

2
d2mE ,u(∆z, ζ)

d∆z2 + f (θ̂(ŵ∗ − ζ))(mE ,h(−ζ)− mE ,u(∆z, ζ)) (B.5)

0 = mE ,u(0, 0)− mE ,h(∆z), for all ∆z /∈ (−∆−, ∆+) (B.6)

0 = lim
∆z→−∞

dmE ,u(∆z, ζ)

d∆z
= lim

∆z→∞

dmE ,u(∆z, ζ)

d∆z
(B.7)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

ˆ ∞

−∞
mE ,u(∆z, 0)gu(∆z)d∆z. (B.8)

Proof of Step 2. We divide this proof into steps a–c.

a. We show that limT →∞ mE ,h(∆z, T ) = mE ,h(∆z) and limT →∞ mE ,u(∆z, ζ, T ) = mE ,u(∆z, ζ): This
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property holds due to the convergence of the distribution of ∆z over time to its ergodic distribu-

tion for any initial condition (Stokey, 1989).

b. To show that 0 =
´ ∞
−∞ mE ,h(∆z, T )gh(∆z)d∆z +

´ ∞
−∞ mE ,u(∆z, 0, T )gu(∆z)d∆z and that 0 =´ ∆+

−∆− mE ,h(∆z)gh(∆z)d∆z +
´ ∆+

−∆− mE ,u(∆z, 0)gu(∆z)d∆z, see Baley and Blanco (2022).

c. We show that the CIR satisfies (B.3) with mE ,h(∆z0) and mE ,u(∆z0, ζ) satisfying (B.4)–(B.8):

Writing the HJB for mE ,h(∆z0, T ) and mE ,u(∆z0, ζ, T ), we have that

0 = 1 − Ess −
dmE ,h(∆z, T )

dT − (γ + χ)
dmE ,h(∆z, T )

d∆z
+

σ2

2
d2mE ,h(∆z, T )

d∆z2

+ δ(mE ,u(0, 0, T )− mE ,h(∆z, T )),

0 = −Ess −
dmE ,u(∆z, ζ, T )

dT − (γ + χ)
dmE ,u(∆z, ζ, T )

d∆z
+

σ2

2
d2mE ,u(∆z, ζ, T )

d∆z2

+ f (θ̂(ŵ∗ − ζ))(mE ,h(−ζ, T )− mE ,u(∆z, ζ, T ))

0 = mE ,u(0, 0, T )− mE ,h(∆z, T ), for all ∆z /∈ (−∆−, ∆+)

0 = lim
∆z→−∞

dmE ,u(∆z, ζ, T )

d∆z
= lim

∆z→∞

dmE ,u(∆z, ζ, T )

d∆z

0 =

ˆ ∆+

−∆−
mE ,h(∆z, T )gh(∆z)d∆z +

ˆ ∆+

−∆−
mE ,u(∆z, 0, T )gu(∆z)d∆z.

The border condition for mE ,u(∆z, ζ, T ) is implied from the fact that the job-finding rate f (θ̂(ŵ∗))

is independent of ∆z, so the function mE ,u(∆z, ζ, T ) is constant in the entire domain. Taking the

limit T → ∞ and using point-wise convergence of mE ,h(∆z0, T ) and mE ,u(∆z0, ζ, T ), we have

the result.

Step 3. The solutions of the differential equations (B.4)–(B.7) satisfy (B.1) and (B.2).

Proof of Step 3. This is just an application of Øksendal (2007), Chapter 9.

Before starting the next step of the proof, we summarize the conditions that characterize the

distributions of ∆z.

Steady-State Cross-Sectional Distribution ∆z. Below we describe the Kolmogorov Forward

Equations (KFE) for gh(∆z) and gu(∆z).

δgh(∆z) = (γ + χ)(gh)′(∆z) +
σ2

2
(gh)′′(∆z) ∀∆z ∈ (−∆−, ∆+)/{0} (B.9)

f (θ̂(ŵ∗))gu(∆z) = (γ + χ)(gu)′(∆z) +
σ2

2
(gu)′′(∆z) ∀∆z ∈ (−∞, ∞)/{0} (B.10)
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gh(∆z) = 0, for all ∆z /∈ (−∆−, ∆+) (B.11)

lim
∆z→−∞

gu(∆z) = lim
∆z→∞

gu(∆z) = 0. (B.12)

1 =

ˆ ∞

−∞
gu(∆z)d∆z +

ˆ ∆+

−∆−
gh(∆z)d∆z, (B.13)

f (θ̂(ŵ∗))(1 − E) = δE +
σ2

2

[
lim

∆z↓−∆−
(gh)′(∆z)− lim

∆z↑∆+
(gh)′(∆z)

]
, (B.14)

gh(∆z), gu(∆z) ∈ C, gu(∆z) ∈ C2((−∞, ∞)/{0}), gh(∆z) ∈ C2((−∆−, ∆+)/{0})

Proposition B.2. Assume flexible entry wages. Up to first order, the CIR of employment is given by:

CIRE (ζ)
ζ

= −(1 − Ess)
(γ + χ)Eh[a] + Eh[∆z]

σ2 + o(ζ).

Proof. The proof proceeds in three steps. Step 1 computes the value function for an unemployed

worker mE ,u(∆z) (when entry wages are flexible, the job-finding rate and this value function are

independent of the shock ζ, so we omit this argument). Step 2 computes the value for the employed

worker at ∆z = 0—i.e., mE ,h(0). Step 3 characterizes the CIR as a function of steady-state aggregate

variables and moments.

Step 1. The CIR is given by

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)
(1 − Ess),

with

0 = 1 − Ess − (γ + χ)
dmE ,h(∆z)

d∆z
+

σ2

2
d2mE ,h(∆z)

d∆z2 + δ

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)− mE ,h(∆z)

)
,

0 = − Ess

f (θ̂(ŵ∗))
+ mE ,h(0)− mE ,h(∆z), for all ∆z /∈ (−∆−, ∆+)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)
(1 − Ess). (B.15)

Proof of Step 1. To show this result, note that the solution to (B.5) and (B.7) is mE ,u(∆z) =

mE ,u(0), for all ∆z. Thus,

0 = −Ess + f (θ̂(ŵ∗))(mE ,h(0)− mE ,u(0)) ⇐⇒ mE ,u(0) = − Ess

f (θ̂(ŵ∗))
+ mE ,h(0). (B.16)

Replacing (B.16) into the CIR, we have the result.
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Step 2. We show that mE ,h(0) = Ess
f (θ̂(ŵ∗))

− (1 − Ess)Eh[a], where Eh[a] is the cross-sectional

expected age of the match or the worker’s tenure at the current match.

Proof of Step 2. Observe that mE ,h(∆z) satisfies the following recursive representation

mE ,h(∆z) = E

[ˆ τm

0
(1 − Ess)dt +

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)∣∣∣∣∣∆z0 = ∆z

]
. (B.17)

Define the following auxiliary function

Ψ(∆z|φ) = E

[ˆ τm

0
eφt(1 − Ess)dt + eφτm

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)∣∣∣∣∣∆z0 = ∆z

]
. (B.18)

and note that Ψ(∆z|0) = mE ,h(∆z). The auxiliary function Ψ(∆z|φ) satisfies the following HJB and
border conditions:

− φΨ(∆z|φ) + δ

(
Ψ(∆z|φ)−

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

))
= (1 − Ess)− (γ + χ)

∂Ψ(∆z|φ)
∂∆z

+
σ2

2
∂2Ψ(∆z|φ)

∂∆z2 ,(B.19)

Ψ(∆z, φ) =

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)
for all ∆z /∈ (−∆−, ∆+).

Taking the derivative with respect to φ in (B.19), we have that

(δ − φ)
∂Ψ(∆z|φ)

∂φ
− Ψ(∆z|φ) = −(γ + χ)

∂2Ψ(∆z, φ)

∂∆z∂φ
+

σ2

2
∂3Ψ(∆z|φ)

∂∆z2∂φ
,

∂Ψ(∆z|φ)
∂φ

= 0 for all ∆z /∈ (−∆−, ∆+).

Using the Schwarz theorem to exchange partial derivatives, evaluating at φ = 0, and using
Ψ(∆z|0) = mE ,h(∆z), we obtain

δ
∂Ψ(∆z|0)

∂φ
− mE ,h(∆z) = −(γ + χ)

∂

∂∆z

(
∂Ψ(∆z|0)

∂φ

)
+

σ2

2
∂2

∂∆z2

(
∂Ψ(∆z|0)

∂φ

)
, (B.20)

∂Ψ(−∆−|0)
∂φ

=
∂Ψ(∆+|0)

∂φ
= 0. (B.21)

Equations (B.20) and (B.21) correspond to the HJB and border conditions of the function ∂Ψ(∆z|0)
∂φ =

E
[´ τm

0 mE ,h(∆zt)dt
∣∣∣∆z0 = ∆z

]
. Evaluating ∂Ψ(∆z|0)

∂φ at ∆z = 0, using the occupancy measure and

result (B.15), we write the previous equation as:

∂Ψ(0|0)
∂φ

= E

[ˆ τm

0
mE ,h(∆zt)dt

∣∣∣∆z0 = 0

]
= ED [τm]

´ ∞
−∞ mE ,h(∆z)gh(∆z)d∆z

Ess

= ED [τm]

( Ess

f (θ̂(ŵ∗))
− mE ,h(0)

)
(1 − Ess)

Ess
, (B.22)

B6



where ED [τm] is the mean duration of completed employment spells (the subscript highlights that

the moment can be easily computed from the data). From (B.18), we also have that

∂Ψ(0|0)
∂φ

= E

[ˆ τm

0
s (1 − Ess)ds + τm

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)∣∣∣∣∣∆z0 = 0

]

= ED [τm]

[
(1 − Ess)

Eh[a]
Ess

+

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)]
, (B.23)

Combining (B.22) and (B.23), and solving for mE ,h(0) we obtain mE ,h(0) = Ess
f (θ̂(ŵ∗))

− (1 − Ess)Eh[a].

Step 3. Up to a first-order approximation, the CIR is given by:

CIRE (ζ) = −(1 − Ess)
(γ + χ)Eh[a] + Eh[∆z]

σ2 ζ + o(ζ2).

Proof of Step 3. To help the reader, we summarize below the conditions used in this step of the proof.

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)
(1 − Ess) (B.24)

with

δmE ,h(∆z) = 1 − Ess − (γ + χ)
dmE ,h(∆z)

d∆z
+

σ2

2
d2mE ,h(∆z)

d∆z2 + δmE ,u(0), (B.25)

mE ,u(0) = mE ,h(∆z) for all ∆z /∈ (−∆−, ∆+)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z + mE ,u(0)(1 − Ess). (B.26)

1. Zeroth Order: If ζ = 0, condition (B.26) implies

CIRE (0) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)
(1 − Ess) = 0.

2. First Order: Taking the derivative of (B.24) we obtain CIR′
E (ζ) =

´ ∞
−∞ mE ,h(∆z)(gh)′(∆z +

ζ)d∆z, which evaluated at ζ = 0 becomes CIR′
E (0) =

´ ∆+

−∆− mE ,h(∆z)(gh)′(∆z)d∆z. Using

condition (B.9) to replace δ =
(γ+χ)(gh)′(∆z)+ σ2

2 (gh)′′(∆z)
gh(∆z) into equation (B.25), we obtain

(γ + χ)(gh)′(∆z) + σ2

2 (gh)′′(∆z)
gh(∆z)

mE ,h(∆z) = 1 − Ess − (γ + χ)m′
E ,h(∆z) +

σ2

2
m′′

E ,h(∆z)

+
(γ + χ)g′(∆z) + σ2

2 g′′(∆z)
g(∆z)

mE ,u(0).

B7



Multiplying both sides by gh(∆z)∆z and integrating between −∆− and ∆+,

0 = (1 − Ess)Eh[∆z]− (γ + χ)T1 +
σ2

2
T2 + mE ,u(0)T3 (B.27)

T1 =

ˆ ∆+

−∆−
∆z
[
m′

E ,h(∆z)gh(∆z) + mE ,h(∆z)(gh)′(∆z)
]

d∆z

T2 =

ˆ ∆+

−∆−
∆z
[
m′′

E ,h(∆z)gh(∆z)− mE ,h(∆z)(gh)′′(∆z)
]

d∆z

T3 =

ˆ ∆+

−∆−
∆z
(
(γ + χ)(gh)′(∆z) +

σ2

2
(gh)′′(∆z)

)
d∆z.

Next, we operate on the terms T1, T2, and T3. The term T1 is equal to

T1 =

ˆ ∆+

−∆−
∆z
[
m′
E ,h(∆z)gh(∆z) + mE ,h(∆z)(gh)′(∆z)

]
d∆z (B.28)

= mE ,u(0)(1 − Ess).

The term T2 satisfies

T2 =

ˆ ∆+

−∆−
∆z
[
m′′
E ,h(∆z)gh(∆z)− mE ,h(∆z)(gh)′′(∆z)

]
d∆z (B.29)

= −mE ,u(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
+ 2
ˆ ∆+

∆−
mE ,h(∆z)g′(∆z)d∆z.

Finally, the term T3 is equal to

T3 =

ˆ ∆+

−∆−
∆z
(
(γ + χ)(gh)′(∆z) +

σ2

2
(gh)′′(∆z)

)
d∆z (B.30)

= −(γ + χ)Ess +
σ2

2

[
∆z(gh)′(∆z)

∣∣∣∆+

∆−

]

Combining results (B.27), (B.28), (B.29), (B.30) and those in Step 2, we obtain

0 = (1 − Ess)Eh[∆z]− (γ + χ)T1 +
σ2

2
T2 + mE ,u(0)T3

= (1 − Ess)Eh[∆z]− (γ + χ)mE ,u(0) + σ2
ˆ ∆+

−∆−
mE ,h(∆z)(gh)′(∆z)d∆z,

which implies
´ ∆+

−∆− mE ,h(∆z)(gh)′(∆z)d∆z = −(1 − Ess)
[(γ+χ)Eh[a]+Eh[∆z]]

σ2 .

Proposition B.3. If (γ + χ) = 0, up to first order, the CIRE (ζ) can be expressed in terms of data moments
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as follows:

CIRE (ζ)
ζ =

1
f (θ̂(ŵ∗))︸ ︷︷ ︸
avg. u dur.

1
VarD [∆w]︸ ︷︷ ︸

dispersion

1
3

ED

[
∆w

∆w2

ED [∆w2]

]
︸ ︷︷ ︸

asymmetries

+ o(ζ).

Proof. The goal is to express the sufficient statistics of the CIR, Eh[a] and Eh[∆z], in terms of

moments of the distribution of ∆w and (τu, τm). We focus in the case of (γ + χ) ̸= 0 and then we

use the assumption (γ + χ) = 0. Let x̃ ≡ x/ED [x] denote random variable x relative to its mean in

the data.

Proposition II.5 expresses moments of the wage distribution as a linear combination of moments

of the distribution of productivity changes among completed employment and unemployment

spells:

ED [∆w] = − [Ēu [∆z] + Ēh [∆z]]

ED
[
∆w2] = [Ēu

[
∆z2]+ 2Ēh [∆z] Ēu [∆z] + Ēh

[
∆z2]]

ED
[
∆w3] = −

[
Ēu
[
∆z3]+ 3Ēh [∆z] Ēu

[
∆z2]+ 3Ēh

[
∆z2] Ēu [∆z] + Ēh

[
∆z3]] ,

where Ēh[·] and Ēu[·] denote the expectation operators under the distributions ḡh(∆z) and ḡu(∆z),
respectively. Using results from the same Proposition, we can express the moments of productivity
changes for completed unemployment spells in terms of model parameters:

Ēu [∆z] =

(
L−1

2 −L2

)
L1

, Ēu

[
∆z2

]
=

2
(
L−2

2 + L2
2 − 1

)
L2

1
, Ēu

[
∆z3

]
=

6
(
−L3

2 + L2 −L−1
2 + L−3

2

)
L3

1
,

where

L1 =

√
2 f (θ̂(ŵ∗))

σ2 , L2 =

√√√√√ (γ + χ) +
√
(γ + χ)2 + 2σ2 f (θ̂(ŵ∗))

−(γ + χ) +
√
(γ + χ)2 + 2σ2 f (θ̂(ŵ∗))

.

From these two sets of equations, we solve for the moments of productivity changes for completed

employment spells and obtain

Ēh [∆z] = −

(
L−1

2 −L2

)
L1

− ED [∆w]

Ēh
[
∆z2] = ED

[
∆w2]+ 2ED [∆w]


(
L−1

2 −L2

)
L1

− 2
L2

1
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Ēh
[
∆z3] = −ED

[
∆w3]− 3ED

[
∆w2]

(
L−1

2 −L2

)
L1

+
6
L2

1
ED [∆w] .

Assuming (γ + χ) = 0, to obtain Eh[∆z], we evaluate (II.22) at m = 1, use the fact that L2 = 1,

ED [∆w] = 0 and ED [τu]
ED [τ]

= Ess, and substitute σ2 from Lemma B.6: Eh [∆z] = − ED[∆w3]
3ED [∆w2]

. Finally,

replace this expression into (23):

CIRE (ζ)
ζ

= − (1 − Ess)
Eh [∆z]

σ2 = (1 − Ess)

ED[∆w3]
3ED [∆w2]

ED [∆w2]
ED [τ]

=
1

f (θ̂(ŵ∗))

ED
[
∆w3]

3ED [∆w2]2
=

1
f (θ̂(ŵ∗))

1
VarD [∆w2]

1
3

ED

[
∆w

∆w2

ED [∆w2]

]
.

B.2 Proof of Proposition 7: CIR of Employment with Sticky Entry Wage

Proposition 7. Assume sticky entry wages. Up to first order, the CIR of employment is given by:

CIRE (ζ)
ζ

= (1 − Ess)

[
− [γEh[a] + Eh[∆z]]

σ2 +
1

f (θ̂(ŵ∗)) + s

[
η′(ŵ∗)
η(ŵ∗)

+
T ′

ŵ(ŵ
∗, ρ̂)

T (ŵ∗, ρ̂)
− T ′

ŵ(ŵ
∗, 0)

T (ŵ∗, 0)

]]
+ o(ζ).

(B.31)

Proof. We divide the proof in two steps. Step 1 characterizes mE ,u(∆z, ζ). Steps 2 uses the equi-

librium conditions to show (B.31). The starting point is the CIR for employment, which is given

by

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

ˆ ∞

−∞
mE ,u(∆z, ζ)gu(∆z + ζ)d∆z, (B.32)

with

0 = 1 − Ess − γ
dmE ,h(∆z)

d∆z
+

σ2

2
d2mE ,h(∆z)

d∆z2 + δ(mE ,u(0, 0)− mE ,h(∆z)), for all ∆z ∈ (−∆−, ∆+)(B.33)

0 = −Ess − γ
dmE ,u(∆z, ζ)

d∆z
+

σ2

2
d2mE ,u(∆z, ζ)

d∆z2 + f (θ̂(ŵ∗ − ζ))(mE ,h(−ζ)− mE ,u(∆z, ζ)) (B.34)

0 = mE ,u(0, 0)− mE ,h(∆z), for all ∆z /∈ (−∆−, ∆+) (B.35)

0 = lim
∆z→−∞

dmE ,u(∆z, ζ)

d∆z
= lim

∆z→∞

dmE ,u(∆z, ζ)

d∆z
(B.36)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

ˆ ∞

−∞
mE ,u(∆z)gu(∆z)d∆z (B.37)
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The key differences between the CIR with flexible wages and the CIR with sticky wages are

found in the HJB equation at the moment of the shock. With sticky entry wages, the job-finding

probability is given by f (θ̂(ŵ∗ − ζ)), since now the TFPR-adjusted entry wage is lower. As a

consequence, we need to evaluate mE ,h(∆z) at ∆z = −ζ because conditional on finding a job, the

TFPR-adjusted entry wage is lower. Observe that following the first job separation, the aggregate

TFPR shock is fully absorbed (see the term mE ,u(0, 0) in equation (B.33)).

Step 1. The value function mE ,u(∆z, ζ) is independent of ∆z and satisfies mE ,u(∆z, ζ) =

− Ess
f (θ̂(ŵ∗−ζ))

+ mE ,h(−ζ).

Proof of Step 1. We guess and verify that mE ,u(∆z, ζ) = mE ,u(0, ζ) for all ∆z. From the equilibrium

conditions (B.34) and (B.36),

0 = −Ess + f (θ̂(ŵ∗ − ζ))(mE ,h(−ζ)− mE ,u(0, ζ)).

Thus, mE ,u(0, ζ) = mE ,u(∆z, ζ) = − Ess
f (θ̂(ŵ∗−ζ))

+ mE ,h(−ζ).
Step 2. Up to a first-order approximation, the CIR is given by:

CIRE (ζ) = −(1 − Ess)
(γ + χ)Eh[a] + Eh[∆z]

σ2 ζ +
(1 − Ess)

f (θ̂(ŵ∗)) + s

(
η′(ŵ∗)
η(ŵ∗)

+
T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
− T ′(ŵ∗, 0)

T (ŵ∗, 0)

)
ζ + o(ζ2).

Proof of Step 2. From Step 1, we have that

CIR′
E (0) =

ˆ ∞

−∞
mE ,h(∆z)(gh)′(∆z)d∆z +

(
−Ess fŵ(θ̂(ŵ∗))

f (θ̂(ŵ∗))2
− m′

E ,h(0)

)
(1 − Ess).

Since
´ ∞
−∞ mE ,h(∆z)(gh)′(∆z)d∆z satisfies the same system of functional equations as the CIR with

flexible entry wages characterized in Online Appendix B.1,

ˆ ∞

−∞
mE ,h(∆z)(gh)′(∆z)d∆z = −(1 − Ess)

γEh[a] + Eh[∆z]
σ2 . (B.38)

Observe that we can write

mE ,h(∆z) = E

[ˆ τm

0
(1 − Ess)dt + mE ,u(∆z, 0)

∣∣∣∣∣∆z0 = ∆z

]
,

= (1 − Ess)T (ŵ∗ + ∆z, 0)− Ess

f (θ̂(ŵ∗))
+ mE ,h(0).
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Taking the derivative with respect to ∆z, evaluating it at ∆z = 0, and using s = 1/T (ŵ∗, 0) from

the Renewal Principle, we have that

m′
E ,h(0) = (1 − Ess)T ′

ŵ(ŵ
∗, 0) =

s
f (θ̂(ŵ∗)) + s

T ′
ŵ(ŵ

∗, 0) =
1

f (θ̂(ŵ∗)) + s
T ′(ŵ∗, 0)
T (ŵ∗, 0)

. (B.39)

From the free entry condition f (θ̂(ŵ∗)) =
(

Ĵ(ŵ∗)
K̃

) 1−α
α

, and the definition (1− η(ŵ∗)) = Ĵ(ŵ∗)/Ŝ(ŵ∗),

we can compute the elasticity of the job finding rate with respect to the entry wage:

fŵ(θ̂(ŵ∗))

f (θ̂(ŵ∗))
=

1−α
α

(
Ĵ(ŵ∗)

K̃

) 1−α
α −1 Ĵ′(ŵ∗)

κ̃(
Ĵ(ŵ∗)

K̃

) 1−α
α

=
1 − α

α

Ĵ′(ŵ∗)
Ĵ(ŵ∗)

=
1 − α

α

[
− η′(ŵ∗)
(1 − η(ŵ∗))

+
T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)

]
.

Finally, combining this result with the fact that Ess =
f (θ̂(ŵ∗))

f (θ̂(ŵ∗))+s
, s = 1

T (ŵ∗,0) , η′(ŵ∗)
(

α
η(ŵ∗) − 1−α

1−η(ŵ∗)

)
=

− T ′(ŵ∗,ρ̂)
T (ŵ∗,ρ̂) , and operating, we obtain

−Ess fŵ(θ̂(ŵ∗))

f (θ̂(ŵ∗))2
=

1
f (θ̂(ŵ∗)) + s

[
−1 − α

α

[
− η′(ŵ∗)
(1 − η(ŵ∗))

+
T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)

]]
=

1
f (θ̂(ŵ∗)) + s

[
η′(ŵ∗)
η(ŵ∗)

+
T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)

]
. (B.40)

Combining results in equations (B.38), (B.39), and (B.40), we obtain the desired result:

CIR′
E (0) = −(1−Ess)

[(γ + χ)Eh[a] + Eh[∆z]]
σ2 +

1 − Ess

f (θ̂(ŵ∗)) + s

[
η′(ŵ∗)
η(ŵ∗)

+
T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
− T ′(ŵ∗, 0)

T (ŵ∗, 0)

]
.

B.3 Proof of Lemma 2

The following proposition provides a characterization of T ′
ŵ(ŵ

∗, ρ̂)/T (ŵ∗, ρ̂) stated in Lemma 2.

Proposition B.4. Up to a second-order approximation of T (ŵ, ρ̂) around ŵ = ŵ∗,

T ′
ŵ(ŵ

∗, ρ̂)

T (ŵ∗, ρ̂)
=

∆+ − ∆−

∆+∆− .

Proof. To show this property, it is useful to change the state variable in T (ŵ, ρ̂) from ŵ to ∆z. Define
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T̃ (∆z, ρ̂) := T (ŵ∗ + ∆z, ρ̂). Then, applying Itô’s Lemma, we obtain

δT̃ (∆z, ρ̂) = 1 − ρ̂T̃ (∆z, ρ̂)− (γ + χ)T̃ ′
∆z(∆z, ρ̂) +

σ2

2
T̃ ′′

∆z2(∆z, ρ̂) ∀ ∆z ∈ (−∆−, ∆+), (B.41)

T̃ (∆z, ρ̂) = 0 ∀ ∆z /∈ (−∆−, ∆+). (B.42)

Let (γ + χ) ̸= 0 and ∆+ ̸= ∆−. In this case, we proceed with a second-order Taylor approximation

of T̃ (∆z, ρ̂) around ∆z = 0,

T̃ (∆z, ρ̂) = T̃ (0, ρ̂) + T̃ ′
∆z(0, ρ̂)∆z +

1
2
T̃ ′′

∆z2(0, ρ̂)∆z2 + O(∆z3).

From the border conditions in (B.42), we obtain (we omit the term O(∆z3) to save on notation)

T̃ (0, ρ̂) + T̃ ′
∆z(0, ρ̂)∆+ +

1
2
T̃ ′′

∆z2(0, ρ̂)(∆+)2 = 0, (B.43)

T̃ (0, ρ̂) + T̃ ′
∆z(0, ρ̂)(−∆−) +

1
2
T̃ ′′

∆z2(0, ρ̂)(∆−)2 = 0.

Taking the difference

T̃ ′
∆z(0, ρ̂)(∆+ + ∆−) = −1

2
T̃ ′′

∆z2(0, ρ̂)
(
(∆+)2 − (∆−)2) ⇐⇒ T̃ ′

∆z(0, ρ̂) = −1
2
T̃ ′′

∆z2(0, ρ̂)
(
∆+ − ∆−) .

Replacing this last equation into the HJB equation in (B.41) evaluated at ∆z = 0 and into (B.43), we

obtain

T̃ (0, ρ̂) =
1 +

(
σ2+(γ+χ)(∆+−∆−)

2

)
T̃ ′′

∆z2(0, ρ̂)

ρ̂ + δ

T̃ (0, ρ̂) = −1
2
T̃ ′′

∆z2(0, ρ̂)
(
(∆+)2 − ∆+

(
∆+ − ∆−)) .

Combining these equations and solving for T̃ (0, ρ̂) and T̃ ′
∆z(0, ρ̂), we have T̃ ′

∆z(0,ρ̂)
T̃ (0,ρ̂)

=
T ′

ŵ∗ (ŵ∗,ρ̂)
T (ŵ∗,ρ̂) =

∆+−∆−
∆+∆− .

B.4 Proof of Proposition 8

We divide Proposition 8 into two propositions. Proposition B.5 “rescales the speed of time” to

provide a recursive representation of η(ŵ).
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Proposition B.5. Define

τend = inf{t ≥ 0 : Γt /∈ (ŵ−, ŵ+)}

where (ŵ−, ŵ+) is a Nash equilibrium. Then, the worker’s share η(ŵ) satisfies the following Bellman

equation

η(ŵ) = E

[ˆ τend

0
e−(ρ̂+δ)t(ρ̂ + δ)

eΓt − ρ̂Û
1 − ρ̂Û

dt + e−(ρ̂+δ)τend
1[∆zτend = ∆+]|Γ0 = ŵ

]

with

dΓt = (ρ̂ + δ)(−γ̂T (Γt, ρ̂) + σ2T ′
ŵ(Γt, ρ̂))dt + σ

√
T (Γt, ρ̂)(ρ̂ + δ)dW z

t .

Proof. The HJB equations for the worker’s value and the surplus of the match are

(ρ̂ + δ)Ŵ(ŵ) = eŵ − ρ̂Û − γ̂Ŵ ′(ŵ) +
σ2

2
Ŵ ′′(ŵ) ∀ŵ ∈ (ŵ−, ŵ+)

(ρ̂ + δ)Ŝ(ŵ) = 1 − ρ̂Û − γ̂Ŝ′(ŵ) +
σ2

2
Ŝ′′(ŵ) ∀ŵ ∈ (ŵ−, ŵ+),

respectively. Replacing the definition of the worker’s share η(ŵ) = Ŵ(ŵ)/Ŝ(ŵ) into the worker’s
value function, we obtain

(ρ̂+ δ)(η(ŵ)Ŝ(ŵ)) = eŵ − ρ̂Û − γ̂
(
η(ŵ)Ŝ′(ŵ) + η′(ŵ)Ŝ(ŵ)

)
+

σ2

2
(
η(ŵ)Ŝ′′(ŵ) + 2η′(ŵ)Ŝ′(ŵ) + η′′(ŵ)Ŝ(ŵ)

)
∀ŵ ∈ (ŵ−, ŵ+).

Using the HJB equation of the surplus to replace (ρ̂ + δ)Ŝ(ŵ) on the left hand side,

(1 − ρ̂Û)η(ŵ) = eŵ − ρ̂Û + η′(ŵ)(−γ̂Ŝ(ŵ) + σ2Ŝ′(ŵ)) + η′′(ŵ)
σ2

2
Ŝ(ŵ) ∀ŵ ∈ (ŵ−, ŵ+).

Since Ŝ(ŵ) = (1 − ρ̂Û)T (ŵ, ρ̂), multiplying by (ρ̂ + δ), we arrive at

(ρ̂ + δ)η(ŵ) = (ρ̂ + δ)
eŵ − ρ̂Û
1 − ρ̂Û

+ η′(ŵ)(ρ̂ + δ)(−γ̂T (ŵ, ρ̂) + σ2T ′
ŵ(ŵ, ρ̂)) + η′′(ŵ)

σ2

2
(ρ̂ + δ)T (ŵ, ρ̂) ∀ŵ ∈ (ŵ−, ŵ+).

Finally, recall the value-matching conditions Ŵ(ŵ−) = Ĵ(ŵ−) = Ŵ(ŵ+) = Ĵ(ŵ+) = 0, and the

smooth pasting conditions Ŵ ′(−∆−) = Ĵ′(∆+) = 0. The L’Hôpital’s rule implies

lim
ŵ↓ŵ−

η(ŵ) = lim
ŵ↓ŵ−

Ŵ(ŵ)

Ŝ(ŵ)
= lim

ŵ↓ŵ−

Ŵ ′(ŵ)

Ĵ′(ŵ)
= 0

lim
ŵ↑ŵ+

η(ŵ) = lim
ŵ↑ŵ+

Ŵ(ŵ)

Ŝ(ŵ)
= lim

ŵ↑ŵ+

Ŵ ′(ŵ)

Ŵ ′(ŵ)
= 1,
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which are the boundary values for the worker’s share at the separation triggers.

Finally, the equivalence of the combined Dirichlet-Poisson problem (i.e., the mapping from

the corresponding HJB equations and boundary conditions of η(ŵ) to the sequential formulation)

gives us the following Bellman equation

η(ŵ) = E

[ˆ τend

0
e−(ρ̂+δ)t(ρ̂ + δ)

eΓt − ρ̂Û
1 − ρ̂Û

dt + e−(ρ̂+δ)τend
1[∆zτend = ∆+]|Γ0 = ŵ

]
,

where τend = inf{t ≥ 0 : Γt /∈ (ŵ−, ŵ+)} and

dΓt = (ρ̂ + δ)(−γ̂T (Γt, ρ̂) + σ2T ′
ŵ(Γt, ρ̂))dt + σ

√
T (Γt, ρ̂)(ρ̂ + δ)dW z

t .

Proof of Proposition 8. Below, we prove each property.

1. If ∆+, ∆− → ∞, then T (ŵ, ρ̂) =
´ ∞

0 e−(ρ̂+δ)t dt = 1
ρ̂+δ . The optimality condition for ŵ∗ implies

0 = −T ′
ŵ(ŵ

∗, ρ̂)

T (ŵ∗, ρ̂)
= η′(ŵ∗)

(
α

η(ŵ∗)
− 1 − α

1 − η(ŵ∗)

)
⇐⇒ α = η(ŵ∗).

Therefore, by the definition of η(ŵ),

α = η(ŵ∗) =
E
[´ τm

0 e−ρ̂t+ŵt dt|ŵ0 = ŵ∗
]
− ρ̂ÛT (ŵ, ρ̂)

(1 − ρ̂Û)T (ŵ, ρ̂)

⇐⇒
[
α + (1 − α)ρ̂Û

]
T (ŵ, ρ̂) = E

[ˆ τm

0
e−ρ̂t+ŵt dt|ŵ0 = ŵ∗

]
.

Since T (ŵ, ρ̂) is constant, the HJB equation of the worker’s share η(ŵ) is given by

(ρ̂ + δ)η(ŵ) = (ρ̂ + δ)
eŵ − ρ̂Û
1 − ρ̂Û

− γ̂η′(ŵ) + η′′(ŵ)
σ2

2
∀ŵ ∈ (−∞, ∞). (B.44)

Taking the derivative of (B.44) with respect to ŵ yields

(ρ̂ + δ)η′(ŵ) = (ρ̂ + δ)
eŵ

1 − ρ̂Û
− γ̂η′′(ŵ) + η′′′(ŵ)

σ2

2
∀ŵ ∈ (−∞, ∞).
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This expression corresponds to the HJB of the function η′(ŵ), which can be expressed as

η′(ŵ∗) = (ρ̂ + δ)
E
[´ τm

0 e−ρ̂t+ŵt dt|ŵ0 = ŵ∗
]

1 − ρ̂Û

Combining all these results, we finally obtain

η′(ŵ∗)
η(ŵ∗)

=
η′(ŵ∗)

α
= (ρ̂+ δ)

E
[´ τm

0 e−ρ̂t+ŵt dt|ŵ0 = ŵ∗
]

α(1 − ρ̂Û)
= (ρ̂+ δ)

[
α + (1 − α)ρ̂Û

]
T (ŵ, ρ̂)

α(1 − ρ̂Û)
=

[
α + (1 − α)ρ̂Û

]
α(1 − ρ̂Û)

.

2. If γ+χ = 0 and ∆+ = ∆−, then T ′
ŵ(ŵ

∗, ρ̂) = 0 and η(ŵ∗) = α (see the proof of Proposition B.4,

item a). If (∆+ + ∆−) is small enough, then we can use a second-order approximation of η(ŵ)

around ŵ = ŵ∗ to characterize η′(ŵ∗) only using the border conditions. The approximation is

given by

η(ŵ) = η(ŵ∗) + η′(ŵ∗)(ŵ − ŵ∗) +
1
2

η′′(ŵ∗)(ŵ − ŵ∗)2 + O((ŵ − ŵ∗)3).

Evaluating this expression at ŵ− and ŵ+, and omitting any terms of the order O((ŵ − ŵ∗)3),

we obtain

η(ŵ∗) + η′(ŵ∗)(ŵ− − ŵ∗) +
1
2

η′′(ŵ∗)(ŵ− − ŵ∗)2 = 0,

η(ŵ∗) + η′(ŵ∗)(ŵ+ − ŵ∗) +
1
2

η′′(ŵ∗)(ŵ+ − ŵ∗)2 = 1,

respectively. The difference between both equations is given by η′(ŵ∗) = 1
∆++∆− . From the

proof of Proposition B.4 item b, we know that T̃ (0, 0) = 1/s = 1/(δ + (σ/∆+)2) ⇒ send =

(σ/∆+)2. Replacing this result in the previous equation, we obtain, η′(ŵ∗)
η(ŵ∗) = 1

α
1

∆++∆− =
√

send

2ασ .

B.5 Proof of Proposition 9

We divide the proof of Proposition 9 into three steps. Proposition B.6 recovers the parameters

of the stochastic process of the wage-to-revenue productivity ratio ∆z. Proposition B.7 recovers

the distribution of cumulative productivity shocks conditional on job transitions Ḡh(∆z). Finally,

Proposition B.8 recovers the distribution of ∆z among employed workers Gh(∆z).

Proposition B.6. Let τ := τm + τu. The drift (γ + χ) and volatility σ of the stochastic process guiding
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cumulative productivity shocks can be recovered from the data with

γ + χ =
ED [∆w]

ED [τ]
, σ2 =

ED [(∆w − (γ + χ)τ)2]

ED [τ]

Proof. From the law of motion dzt = (γ + χ)dt + σ dW z
t and the fact that wt0 − zt0 = ŵ∗, we have

∆w = −∆zτ = (γ + χ)τ + σW z
τ . (B.45)

Drift: Taking expectation on both sides conditional on a h-to-u-to-h transition, we have that

σE[W z
τ ] = ED [∆w] − (γ + χ)ED [τ]. Since W z

t is a martingale, by Doob’s Optional Stopping

Theorem (OST) W z
τ is also a martingale, and E[W z

τ ] = E[W z
0 ] = 0, thus yielding the desired result.

Idiosyncratic volatility: Let us define Yt = (∆zt + (γ + χ)t)2. We apply Itô’s Lemma to Yt and

obtain

dYt = 2 (∆zt + (γ + χ)t) (d∆zt + (γ + χ)dt) +
1
2

2(d∆zt)
2 = 2σ (∆zt + (γ + χ)t)dW z

t + σ2 dt

Integrating the previous equation between 0 and τ and using condition (B.45), we obtain

(∆w − (γ + χ)τ)2 = 2σ

ˆ τ

0
(∆zt + (γ + χ)t)dW z

t + σ2τ.

Since
´ t

0 (∆zt + (γ + χ)t)dW z
t is a martingale, by the OST,

´ τ
0 (∆zt + (γ + χ)t)dW z

t is a martingale

and E[
´ τ

0 (∆zt + (γ + χ)t)dW z
t ] = 0, thus yielding the desired result.

Proposition B.7. The cumulative distribution of ∆z conditional on a job separation is given by

Ḡh(∆z) =
σ2

2 f (θ̂(ŵ∗))

dlw(−∆z)
dz

− (γ + χ)

f (θ̂(ŵ∗))
lw(−∆z)− [1 − Lw(−∆z)] . (B.46)

where Lw(∆w) denotes the CDF corresponding to the marginal distribution lw(∆w).

Proof. The objective in this proof is to use the nondifferentiability of the distribution of ḡs(∆z) for

s = {h, u} at ∆z = 0 to express the distribution of ∆z conditional on a separation. Observe that

Lw(a) = Prlw
(∆w ≤ a)

=(1) PrḠh,Ḡu
(−(∆zh + ∆zu) ≤ a)

=(2) PrḠh,Ḡu
(∆zh + ∆zu ≥ −a)
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=(3) 1 − Pr(∆zh + ∆zu ≤ −a)

=(4) 1 −
ˆ ∞

−∞
Ḡh(−a − y)ḡu(y)dy.

Step (1) uses the definition of ∆w. Steps (2)–(4) use independence of Ḡh(·) and ḡu(·). It can be

shown that

ḡu(∆z) = Gu

 eβ2( f (θ̂(ŵ∗)))∆z if ∆z ∈ (−∞, 0]

eβ1( f (θ̂(ŵ∗)))∆z if ∆z ∈ [0, ∞)
, Lw(∆w) = 1 − C1(∆w)− C2(∆w), (B.47)

where

C1(∆w) = Gu

ˆ ∞

0
Ḡh(−∆w − u)eβ1( f (θ̂(ŵ∗)))u du, C2(∆w) = Gu

ˆ 0

−∞
Ḡh(−∆w − u)eβ2( f (θ̂(ŵ∗)))u du.

Departing from Lw(∆w) = 1 − ´ ∞
−∞ Ḡh(−∆w − y)ḡu(y)dy and doing the change of variable x =

−∆w − y,

Lw(∆w) = 1 −
ˆ ∞

−∞
Ḡh(x)ḡu(−∆w − x)dx.

Taking the derivative on both sides with respect to ∆w, we obtain

lw(∆w) =

ˆ ∞

−∞
Ḡh(x) (ḡu)′ (−∆w − x)dx.

Reverting the change of variables and using the fact that ḡu(−∆w − x) is nondifferentiable at 0, we

obtain

lw(∆w) = β1( f (θ̂(ŵ∗)))C1(∆w) + β2( f (θ̂(ŵ∗)))C2(∆w).

Thus,

lw(∆w) = β1( f (θ̂(ŵ∗)))C1(∆w) + β2( f (θ̂(ŵ∗)))C2(∆w). (B.48)

To obtain the last condition, observe that

C1(∆w) = Gu

ˆ −∆w

−∞
Ḡh(y)eβ1( f (θ̂(ŵ∗)))(−∆w−y) dy, C2(∆w) = Gu

ˆ ∞

−∆w
Ḡh(y)eβ2( f (θ̂(ŵ∗)))(−∆w−y) dy.
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Taking the derivative with respect to ∆w and using the Leibniz rule, we obtain

C′
1(∆w) = −GuḠh(−∆w)− β1( f (θ̂(ŵ∗)))C1(∆w), (B.49)

C′
2(∆w) = GuḠh(−∆w)− β2( f (θ̂(ŵ∗)))C2(∆w). (B.50)

Taking derivative of (B.48),

(lw)′(∆w) = β1( f (θ̂(ŵ∗)))C′
1(∆w) + β2( f (θ̂(ŵ∗)))C′

2(∆w)

and using conditions (B.49) and (B.50),

(lw)′(∆w) = Ḡh(−∆w)Gu[β2( f (θ̂(ŵ∗)))− β1( f (θ̂(ŵ∗)))]

− β1( f (θ̂(ŵ∗)))2C1(∆w)− β2( f (θ̂(ŵ∗)))2C2(∆w). (B.51)

Equations (B.47), (B.48), and (B.51) give a system of three functional equations with three unknowns:

1 − Lw(∆w) = C1(∆w) + C2(∆w),

lw(∆w) = β1( f (θ̂(ŵ∗)))C1(∆w) + β2( f (θ̂(ŵ∗)))C2(∆w),

(lw)′(∆w) = Ḡh(−∆w)Gu[β2( f (θ̂(ŵ∗)))− β1( f (θ̂(ŵ∗)))]

− β1( f (θ̂(ŵ∗)))2C1(∆w)− β2( f (θ̂(ŵ∗)))2C2(∆w).

Operating on the system of functional equations,

(lw)′(∆w) +
[
β2( f (θ̂(ŵ∗))) + β1( f (θ̂(ŵ∗)))

]
lw(∆w) + β1( f (θ̂(ŵ∗)))β2( f (θ̂(ŵ∗))) [1 − Lw(∆w)]

=Ḡh(−∆w)Gu[β2( f (θ̂(ŵ∗)))− β1( f (θ̂(ŵ∗)))],

with

Gu =
(

β2( f (θ̂(ŵ∗)))−1 − β1( f (θ̂(ŵ∗)))−1
)−1

β1( f (θ̂(ŵ∗))) =
−(γ + χ)−

√
(γ + χ)2 + 2σ2 f (θ̂(ŵ∗))

σ2 ,
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β2( f (θ̂(ŵ∗))) =
−(γ + χ) +

√
(γ + χ)2 + 2σ2 f (θ̂(ŵ∗))

σ2 .

Then,

Gu[β2( f (θ̂(ŵ∗)))− β1( f (θ̂(ŵ∗)))] =
2 f (θ̂(ŵ∗))

σ2

β2( f (θ̂(ŵ∗))) + β1( f (θ̂(ŵ∗)))

Gu[β2( f (θ̂(ŵ∗)))− β1( f (θ̂(ŵ∗)))]
= − (γ + χ)

f (θ̂(ŵ∗))
.

β1( f (θ̂(ŵ∗)))β2( f (θ̂(ŵ∗)))

Gu[β2( f (θ̂(ŵ∗)))− β1( f (θ̂(ŵ∗)))]
= −1.

Therefore, the differential equation is given by (B.46).

Proposition B.8. If (γ + χ) = 0, the distribution of cumulative productivity shocks gh(∆z) is given by

gh(∆z) = sE
[ˆ ∆z

−∆−

2(∆z − y)
σ2 ḡh(y)dy + Ḡh(−∆−)

2(∆z + ∆−)
σ2

]
.

If (γ + χ) ̸= 0, the distribution of cumulative productivity shocks gh(∆z) is given by

gh(∆z) =
sE

(γ + χ)

[ˆ ∆z

−∆−

(
1 − e

2(γ+χ)

σ2 (y−∆z)
)

ḡh(y)dy + Ḡh(−∆−)
[

1 − e−
2(γ+χ)

σ2 (∆z+∆−)
]]

.

Proof. During employment, the distribution of cumulative productivity shocks satisfies the follow-

ing KFE and the boundary conditions

δgh(∆z) = (γ + χ)(gh)′(∆z) +
σ2

2
(gh)′′(∆z) ∀∆z ∈ (−∆−, ∆+) \ {0},

gh(−∆−) = gh(∆+) = 0, Gh(∆+) = E ,

gh(∆z) ∈ C.

The distribution of cumulative productivity shocks conditional on a job separation satisfies

Ḡh(∆z) =


1 if ∆z ∈ [∆+, ∞)

1
sE
[

σ2

2 lim∆z↓−∆−(gh)′(∆z) + δ
´ ∆z
−∆− gh(x)dx

]
if ∆z ∈ [−∆−, ∆+)

0 if ∆z ∈ (−∞,−∆−).
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Combining these two conditions, we obtain

sE ḡh(∆z) = (γ + χ)(gh)′(∆z) +
σ2

2
(gh)′′(∆z) ∀∆z ∈ (−∆−, ∆+) \ {0}

gh(−∆−) = gh(∆+) = 0, Gh(∆+) = E .

Multiplying both sides of the first equation by e
2(γ+χ)

σ2 ∆z we get

sE e
2(γ+χ)

σ2 ∆z ḡh(∆z) =
σ2

2
d(e

2(γ+χ)

σ2 ∆z(gh)′(∆z))
d∆z

.

Integrating both sides from −∆− to ∆z, we obtain

sE
ˆ ∆z

−∆−
e

2(γ+χ)

σ2 x ḡh(x)dx =
σ2

2

[
e

2(γ+χ)

σ2 ∆z(gh)′(∆z)− lim
x↓−∆−

e
2(γ+χ)

σ2 x(gh)′(x)
]

,

=
σ2

2
e

2(γ+χ)

σ2 ∆z(gh)′(∆z)− sE e−
2(γ+χ)

σ2 ∆−
Ḡh(−∆−),

where the last equation uses the value of Ḡh(∆z) evaluated at ∆z = −∆−. Solving for (gh)′(∆z),

integrating from −∆− to ∆z and taking the limit as (γ + χ) ↓ 0, we get

gh(∆z) = sE
[ˆ ∆z

−∆−

2(∆z − y)
σ2 ḡh(y)dy + Ḡh(−∆−)

2(∆z + ∆−)
σ2

]
.

B.6 Characterizing gh(∆z) and gu(∆z)

The equilibrium policies (ŵ−, ŵ∗, ŵ+) together with the stochastic process guiding ∆z and the

exogenous job separation rate determine the equilibrium distributions of cumulative productivity

shocks gh(∆z) and gu(∆z). Due to the law of motion for ∆z being independent of the worker’s

employment state, the KFEs for employed and unemployed workers are

δgh(∆z) = (γ + χ)(gh)′(∆z) +
σ2

2
(gh)′′(∆z) ∀∆z ∈ (−∆−, ∆+)\{0}, (B.52)

f (θ̂(ŵ∗))gu(∆z) = (γ + χ)(gu)′(∆z) +
σ2

2
(gu)′′(∆z) ∀∆z ∈ R\{0}. (B.53)

Since the entry state for a newly employed or unemployed worker is ∆z = 0, the KFEs (B.52)–(B.53)

do not hold at this point, but gh(·) and gu(·) must be continuous there.
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The boundary conditions impose a zero measure of workers at the borders of the support, so

gh(−∆−) = gh(∆+) = lim∆z→−∞ gu(∆z) = lim∆z→∞ gu(∆z) = 0. These distributions must also be

consistent with a unit measure of workers and a balance equation for steady-state employment:

1 =

ˆ ∞

−∞
gu(∆z)d∆z +

ˆ ∆+

−∆−
gh(∆z)d∆z, (B.54)

f (θ̂(ŵ∗))(1 − E)︸ ︷︷ ︸
u-to-h flows

= δE +
σ2

2

[
lim

∆z↓−∆−
(gh)′(∆z)− lim

∆z↑∆+
(gh)′(∆z)

]
︸ ︷︷ ︸

h-to-u flows

. (B.55)

In equation (B.54), the unit measure of workers is composed of
´ ∞
−∞ gu(∆z)d∆z = 1 − E unem-

ployed and
´ ∆+

−∆− gh(∆z)d∆z = E employed workers. In equation (B.55), the mass of u-toh flows is

f (θ̂(ŵ∗))(1−E), while the mass of h-to-u flows is δE + σ2

2 [lim∆z↓−∆−(gh)′(∆z)− lim∆z↑∆+(gh)′(∆z)]—

i.e., the sum of exogenous and endogenous job separations.

To summarize, equations (B.52)–(B.55), together with the continuity of gu(∆z) and gh(∆z) at

∆z = 0, constitute the equilibrium conditions for the steady-state distributions of cumulative

productivity shocks.
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I Additional Results for Section 2: A Model of Wage-Rigidity-Induced

Job Separations

This section presents additional results extending the analysis in Section 2.

I.1 Derivation of Recursive Equilibrium from Discrete Time

This section presents the discrete-time counterpart of the model described in Section 2 in time

intervals ∆t; i.e., t = 0, ∆t, 2∆t, . . . . We use the equilibrium concept of a Markov perfect equilibrium.

We follow Stokey (2009) to construct a discrete-time approximation of the worker’s idiosyncratic

productivity:

z′∆ =


z∆ + σ

√
∆t with probability 1+ γ

σ

√
∆t

2

z∆ − σ
√

∆t with probability 1− γ
σ

√
∆t

2

. (I.1)

Observe that the process is locally consistent with dzt = γ dt + σ dW z
t (see Kushner and Dupuis,

2001).

Given the discrete-time nature of the problem, the timing within the period is as follows. At

the beginning of the period t, workers’ idiosyncratic productivity shocks are realized. Then, the

labor market opens: exogenous and endogenous separations and new matches are realized. Finally,

production takes place, and agents receive their payoffs. We define all the value functions after the

realization of the idiosyncratic shocks and before the labor market opens.

Value functions. The value of an unemployed worker u∆t(z) is

u∆t(z) = max
w

{
e− f (θ∆t(z;w))∆t

[
B̃ez∆t + e−ρ∆tEz′

[
u∆t(z′)

∣∣ z
]]

+
[
1 − e− f (θ∆t(z;w))∆t

] [
ew∆t + e−ρ∆tEz′

[
h∆t(z′; w)

∣∣ z
]] }

. (I.2)

Here, B̃ez∆t is the flow income from unemployment, 1 − e−∆t f (θ(z;w)) is the probability of finding

a job with flow income ew∆t and continuation value Ez′ [h∆t(z′; w)| z], e−ρ∆t is the discount factor

and z′ is a random variable with law of motion (I.1). We use the notation w∗
∆t(z) to denote the

optimal search policy of an unemployed worker.

The vacancy cost for a period ∆t is K̃ez∆t and the expected return is [1 − e−q(θ(z;w))∆t]j∆t(z; w).
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The free entry condition is given by

min{K̃ez∆t −
[
1 − e−q(θ∆t(z;w))∆t

]
j∆t(z; w), θ∆t(z; w)} = 0. (I.3)

Thus, if the cost of posting vacancies is larger than the expected value of finding a worker—i.e.,

K̃ez∆t −
[
1 − e−q(θ∆t(z;w))∆t

]
j∆t(z; w) > 0—then θ∆t(z; w) = 0. Similarly, if the submarket (z; w) is

open, then the free entry condition holds with equality K̃ez∆t =
[
1 − e−q(θ∆t(z;w))∆t

]
j∆t(z; w).

Let Ih
∆t(z; w) ∈ {0, 1} be an indicator variable equal to one when the worker chooses to continue

in the match and 0 if the worker chooses to quit. Similarly, based on the (z; w) pair, a matched firm

chooses to lay a worker off when I
j
∆t(z; w) = 0 and to continue in the match when Ij(z; w) = 1.

Given firm policy Ij(z; w), the value function of a worker with productivity z employed at wage

w is

hIj

∆t(z; w) =


max

{
e−δ∆t

[
ew∆t + e−ρ∆tEz′

[
hIj

∆t(z
′; w)|z

]]
+ (1 − e−δ∆t)u∆t(z), u∆t(z)

}
, I

j
∆t(z; w) = 1

u∆t(z), I
j
∆t(z; w) = 0.

(I.4)

If the firm chooses not to lay the worker off, then the employed worker chooses between quitting

her job or not while consuming the constant wage w. The notation makes it clear that the fixed

point in (I.4) depends on the firm’s policy function. We define h∆t(z; w) := hI
j∗
∆t

∆t (z; w), where I
j∗
∆t

denotes the firm’s optimal policy function.

Similarly, given a worker’s policy Ih
∆t(z; w), the value of a firm matched with a worker with

wage w and productivity z is

jI
h
∆t

∆t (z; w) =


max

{
e−δ∆t

[
(ez − ew)∆t + e−ρ∆tEz′

[
jI

h
∆t

∆t (z
′; w)|z

]]
, 0
}

if Ih
∆t(z; w) = 1

0 if Ih
∆t(z; w) = 0

(I.5)

We define j∆t(z; w) := hIh∗
∆t

∆t (z; w), where Ih∗
∆t denotes the worker’s optimal policy function.

We are ready to define a Markov Perfect equilibrium with the additional refinement that

continuation in the match needs to be a weakly dominant strategy.

Definition I.2. A Markov Perfect equilibrium is a set {h∆t(z; w), j∆t(z; w), u∆t(z), θ∆t(z; w)} of value

functions and market tightness together with policy functions {Ih∗
∆t, I

j∗
∆t, w∗

∆t(z)} such that:

(i) Given h∆t(z; w) and θ∆t(z; w), u∆t(z) satisfies the value function (I.2) with optimal policy function
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w∗
∆t(z).

(ii) Given j∆t(z; w), the market tightness θ∆t(z; w) satisfies (I.3).

(iii) Given u(z) and I
j∗
∆t, h∆t(z; w) = hI

j∗
∆t

∆t (z; w) satisfies the value function (I.4) with optimal policy

Ih∗
∆t(z; w). Moreover, if for any function I

j
∆t, the value function in (I.4) given by hIj

∆t(z; w) satisfies

e−δ∆t
[
ew∆t + e−ρ∆tEz′

[
hIj

∆t(z
′; w)|z

]]
+ (1 − e−δ∆t)u∆t(z) ≥ u∆t(z)

with strict inequality for some I
j
∆t, then Ih∗

∆t(z; w) = 1.

(iv) Given Ih∗
∆t, j∆t(z; w) = jI

h∗
∆t

∆t (z; w) satisfies the value function (I.5) with optimal policy I
j∗
∆t(z; w).

Moreover, if for any function Ih
∆t, the value function in (I.4) given by jIh

∆t(z; w) satisfies

e−δ∆t
[
(ez − ew)∆t + e−ρ∆tEz′

[
jI

h
∆t

∆t (z
′; w)|z

]]
≥ 0

with strict inequality for some Ih
∆t, then I

j∗
∆t(z; w) = 1.

A comparison with the main text’s recursive equilibrium is helpful. First, in the main text, we

use the optimal continuation set of each agent to define the equilibrium’s best response. This is the

reason why the value functions were not indexed by the continuation set of the other agent. Second,

unmatched workers and firms internalize the outcome of the nontrivial Nash Equilibrium through

h∆t(z; w) and j∆t(z; w), respectively. Third, the Nash equilibrium part of the definition imposes that

the worker’s optimal quit strategy is the best response to the firm’s layoff policy and vice versa.

Fourth, the refinement based on weakly dominating continuation strategies is applied in two steps.

In the first step, we solve the decision problem of an agent for a given continuation policy of the

other agent. In the second step, we verify that continuing in the match weakly dominates leaving it

for all continuation policies of the other agent—not necessarily the optimal one.

We now proceed to derive the equilibrium conditions when ∆t ↓ 0. Define the following limits

u(z) = lim
∆t↓0

u∆t(z), h(z; w) = lim
∆t↓0

h∆t(z; w),

j(z; w) = lim
∆t↓0

j∆t(z; w), θ(z; w) = lim
∆t↓0

θ∆t(z; w).
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Below, we use the fact that for any function u∆t(z) the following two properties hold:

lim
∆t↓0

Ez′ [u∆t(z′)|z]− u(z)
∆t

= Azu,

where Az is the characteristic operator of dzt = γ dt + σ dW z
t , and

lim
∆t↓0

Ez′ [u∆t(z′)|z] = u(z).

Similar properties apply to h∆t(z; w) and j∆t(z; w). For details regarding the convergence of the

limit when ∆t ↓ 0, see Chapters 9 and 10 of Kushner and Dupuis (2001).

Unemployed worker’s HJB equation. Using the fact that e−ρ∆t = 1− ρ∆t+ o(∆t2) and e− f (θ(z;w))∆t =

1 − f (θ(z; w))∆t + o(∆t2), from (I.2) we have that 0 = B̃ez +
Ez′ [ u∆t(z′)|z]−u∆t(z)

∆t − ρEz′ [u∆t(z′)| z] +

maxw f (θ∆t(z; w))Ez′ [ (h∆t(z′; w)− u∆t(z′))| z]+ o(∆t). Using the fact that lim∆t↓0
Ez′ [ u∆t(z′)|z]−u∆t(z)

∆t =

γ ∂u(z)
∂z + σ2

2
∂2u(z)

∂z2 , lim∆t↓0 Ez′ [u∆t(z′)| z] = u(z), and lim∆t↓0 Ez′ [h∆t(z′; w)| z] = h(z; w), we have

that ρu(z) = B̃ez + γ ∂u(z)
∂z + σ2

2
∂2u(z)

∂z2 + maxw f (θ(z; w)) (h(z; w)− u(z)).

Free entry condition. For free entry in (I.3), notice that [1 − e−q(θ∆t(z;w))∆t] = q(θ∆t(z; w))∆t +

o(∆t2). Thus, taking the limit, we obtain min
{

K̃ez − q(θ(z; w))j(z; w), θ(z; w)
}
= 0.

Nontrivial Nash Equilibrium. First, assume that I
j∗
∆t(z; w) = 0. Then, hI

j∗
∆t

∆t (z; w) = h∆t(z; w) =

u∆t(z). Taking the limit, Ij∗(z; w) = 0, then h(z; w) = u(z).

If I
j∗
∆t(z; w) = 1 and Ih∗

∆t (z; w) = 1, then

h∆t(z; w) = e−δ∆t
[
ew∆t + e−ρ∆tEz′

[
h∆t(z′; w)|z

]]
+ (1 − e−δ∆t)u∆t(z)

and h∆t(z; w) ≥ u∆t(z). Or equivalently,

0 = ew +
Ez′ [h∆t(z′; w)| z]− h∆t(z; w)

∆t
− ρEz′

[
h∆t(z′; w)

∣∣ z
]
+ δ [(u∆t(z)− h∆t(z; w))] + o(∆t)

and h∆t(z; w) ≥ u∆t(z). Taking the limit, if Ij∗(z; w) = 1 and Ih∗(z; w) = 1, then

ρh(z; w) = ew + γ
∂h(z; w)

∂z
+

σ2

2
∂2h(z; w)

∂z2 + δ (u(z)− h(z; w)) ,

h(z; w) ≥ u(z).
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If I
j∗
∆t(z; w) = 1 and Ih∗

∆t(z; w) = 0, then

h∆t(z; w) ≥ e−δ∆t
[
ew∆t + e−ρ∆tEz′

[
h∆t(z′; w)|z

]]
+ (1 − e−δ∆t)u∆t(z)

and

h∆t(z; w) = u∆t(z).

In the limit, Ij∗(z; w) = 1 and Ih∗(z; w) = 0,

ρh(z; w) ≥ ew + γ
∂h(z; w)

∂z
+

σ2

2
∂2h(z; w)

∂z2 + δ (u(z)− h(z; w)) ,

h(z; w) = u(z).

Therefore, we can summarize the worker’s optimality condition as

ρh(z; w) = max
{

ew + γ
∂h(z; w)

∂z
+

σ2

2
∂2h(z; w)

∂z2 + δ (u(z)− h(z; w)) , ρu(z)
}

if Ij∗(z; w) = 1.

Applying the same argument to the firm’s problem, we have that

ρj(z; w) = max
{

ez − ew + γ
∂j(z; w)

∂z
+

σ2

2
∂2 j(z; w)

∂z2 + δ (−j(z; w)) , 0
}

if Ih∗(z; w) = 1

Finally, we characterize agents’ continuation sets. We show that the worker’s continuation set is

Zh
∆t(w) = {z : h∆t(z; w) > u∆t(z) or ew∆t + e−ρ∆tEz′

[
u∆t(z′)− u∆t(z)|z

]
> 0}.

Clearly, the worker will continue in the match if h∆t(z; w) > u∆t(z). We now derive the equilibrium

condition for continuation to be a weakly dominating strategy at (z; w). Let us start from the

definition of a weakly dominating strategy: Continuing in the match weakly dominates separating

when the state is (z; w) if, for all firm’s policies I
j
∆t, we have that

e−δ∆t
[
ew∆t + e−ρ∆tEz′

[
hIj

∆t(z
′; w)|z

]]
+ (1 − e−δ∆t)u∆t(z) ≥ u∆t(z),

with strict inequality for at least one policy I
j
∆t. Operating

e−δ∆t
[
ew∆t + e−ρ∆tEz′

[
hIj

∆t(z
′; w)− u(z)|z

]]
≥ 0.
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Since this holds for all I
j
∆t(z; w) at (z; w), it also holds for the infimum of the firm’s policy function.

Thus,

e−δ∆t
[

ew∆t + e−ρ∆tEz′

[
inf
Ij

hIj

∆t(z
′; w)− u∆t(z)|z

]]
≥ 0

Since worker’s optimality imposes that hIj

∆t(z; w) ≥ u∆t(z), with equality when Ij(z; w) = 0, we

have that infIj hIj

∆t(z; w) = u∆t(z) and

ew∆t + e−ρ∆tEz′
[
u∆t(z′)− u∆t(z)|z

]
≥ 0.

Define the productivity set

WDh
∆t(w) =

{
z : ew∆t + e−ρ∆tEz′

[
u∆t(z′)− u∆t(z)|z

]
≥ 0

}
.

Observe that if I
j
∆t(z; w) = 1 for a given w and all z, it is easy to check that hIj=1

∆t (z; w) > u∆t(z) ∀z ∈
WDh

∆t(w). Thus, the set WDh
∆t(w) characterizes the productivity levels for which continuation is

a weakly dominating strategy for the worker. Taking the limit, we have that

Zh(w) = {z : h(z; w) > u(z) or ew − ρu(z) + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2 ≥ 0}.

Applying the same argument to the firm’s problem, we have that

Zh(w) = {z : j(z; w) > 0 or ez − ew ≥ 0} .

I.2 Sequential and Recursive Formulation of the Model

Here, we present the sequential formulation of the problem and show the equivalence to our

recursive formulation.

Environment. The environment—i.e., preferences, technology, shocks, and frictions—is the

same as in Section 2. To focus on the novel component of the paper and to simplify the notation,

we assume that a recursive representation holds across employment and unemployment spells.

An unemployed worker’s choice of submarket (z; w) is associated with a job-finding rate

f (z; w), which induces a stochastic job offer arrival time τu. The value of an unemployed worker
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with productivity z is

U(z) = max
{wt}τu

t=0

E0

[ˆ τu

0
e−ρtB̃ezt dt + e−ρτu

H(zτu ; wτu ; τ⃗m(wτu , zτu))

]
. (I.6)

That is, an unemployed worker searches for a job in submarket (zt; wt) at time t ≤ τu until becoming

employed at wage wτu and receiving the value of employment H(zτu ; wτu ; τ⃗m(wτu , zτu)) at time τu.

Given the (fixed) wage w and current productivity z, a matched worker chooses when to quit,

which induces a stopping time τh. Based on the same (w, z) pair, a matched firm chooses when to

lay off the worker, which induces a stopping time τ j. Given the choices by workers and firms in

addition to the exogenous stopping time τδ, the actual match duration is the minimum stopping

time in the vector τ⃗m = (τh, τ j, τδ), denoted τm = min{τh, τ j, τδ}. Given a vector of stopping times

τ⃗m, the value of a worker employed at wage w with productivity z is

H(z; w, τ⃗m) = E0

[ˆ τm

0
e−ρtew dt + e−ρτm

U(zτm)

]
. (I.7)

That is, an employed worker consumes a constant wage w until time τm when she either endoge-

nously or exogenously transitions to unemployment. Similarly, given a vector of stopping times

τ⃗m, the value of a firm matched with a worker with wage w and productivity z is

J(z; w, τ⃗m) = E0

[ˆ τm

0
e−ρt [ezt − ew]dt

]
. (I.8)

That is, the match produces ezt , of which ew is paid to the worker until it gets dissolved at time τm.

Free Entry. In choosing the number of vacancies to post in each submarket, firms trade off

the expected benefit—i.e., the product of the filling rate q(θ(z; w)) and the value of a filled job

J(z; w, τ⃗m(z; w))—with the flow cost K̃ez of posting a vacancy. In each submarket, firms post

vacancies up to the point at which the marginal vacancy posting cost exceeds its expected benefits.

Thus, free entry requires that, for all (z; w):

min
{

K̃ez − q(θ(z; w))J(z; w, τ⃗m(z; w)), θ(z; w)
}
= 0. (I.9)

Equilibrium Definition. We are now ready to define an equilibrium. Let T be the set of all

stopping times for a given match. Given the state (z; w), staying in the match is a weakly dominant

strategy for the worker if there exists a stopping time τh⋆(z; w) ∈ T such that Pr(τh⋆(z; w) > 0) = 1
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and

H(z; w, τh⋆(z; w), τ j, τδ) ≥ H(z; w, τh, τ j, τδ), ∀τh, τ j ∈ T ,

with strict inequality for some τ j. Similarly, given (z; w), staying in the match is a weakly dominant

strategy for the firm if there exists a stopping time τ j⋆(z; w) ∈ T such that Pr(τ j⋆(z; w) > 0) = 1

and

J(z; w, τh, τ j⋆(z; w), τδ) ≥ J(z; w, τh, τ j, τδ), ∀τh, τ j ∈ T ,

with strict inequality for some τh.

Definition I.3. An equilibrium consists of a set of value functions {H(z; w, τ⃗m), J(z; w, τ⃗m), U(z)}, a

market tightness function θ(z; w), and policy functions
{

τh∗(z; w), τ j∗(z; w), w∗(zt)
}

, such that:

1. Given H(z; w, τ⃗m∗(z; w)), U(z), and θ(z; w), the search strategy {w∗(zt)}τu∗
t=0 solves equation (I.6).

2. Given J(z; w, τ⃗m∗(z; w)), market tightness θ(z; w) solves the free-entry condition (I.9).

3. Given U(z), (τh∗(z; w), τ j∗(z; w)) is a nontrivial Nash equilibrium with stopping times (τh, τ j) that

satisfy

H(z; w, τh∗(z; w), τ j∗(z; w), τδ) ≥ H(z; w, τh, τ j∗(z; w), τδ), ∀(z; w)

J(z; w, τh∗(z; w), τ j∗(z; w), τδ) ≥ J(z; w, τh∗(z; w), τ j, τδ), ∀(z; w)

and Pr(τh∗(z; w) > 0) = 1 (resp. Pr(τ j∗(z; w) > 0) = 1) whenever staying in the match is a

weakly dominant strategy for the worker (resp. the firm) given the state (z; w).

Recursive Equilibrium Conditions. Define the recursive equilibrium conditions:

ρu(z) = B̃ez + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2 + max
w

f (θ(z; w))[h(z; w)− u(z)], ∀z ∈ R (I.10)

0 = min
{

K̃ez − q(θ(z; w))j(z; w), θ(z; w)
}

, ∀(z; w) ∈ R2

z ∈ (Z j(w))c ⇒ h(z; w) = u(z), (I.11)

z ∈ (Zh(w))c ⇒ j(z; w) = 0, (I.12)

0 = max{u(z)− h(z; w),Ahh(z; w) + ew}, ∀z ∈ Z j(w), h(·; w) ∈ C1(Z j(w)) ∩ C(R),(I.13)

0 = max{−j(z; w),Aj j(z; w) + ez − ew}, ∀z ∈ Zh(w), j(·; w) ∈ C1(Zh(w)) ∩ C(R), (I.14)

Zh(w) := int
{

z ∈ R : h(z; w) > u(z) or Ahu(z) + ew > 0
}

, (I.15)

Z j(w) := int {z ∈ R : j(z; w) > 0 or ez − ew > 0} , (I.16)

I8



where we define the characteristic operator for any function v(z) for the firm and the worker as

Ah(v(z)) := −ρv + δ(u(z)− v(z)) + γ
∂v(z)

∂z
+

σ2

2
∂2v(z)

∂z2

Aj(v(z)) := −ρv + δ(0 − v(z)) + γ
∂v(z)

∂z
+

σ2

2
∂2v(z)

∂z2 .

Lemma I.1. The policy functions
{

τh∗, τ j∗, w∗(z)
}

and the value functions {U(z), H(z; w, τ⃗m), J(z; w, τ⃗m)}
given by (I.6), (I.7) and (I.8) and the market tightness function θ(z; w) form a BRE iff. {u(z), h(z; w), j(z; w)}
satisfy equations (I.10)–(I.16) and

u(z) = U(z),

h(z; w) = H(z; w, τh∗(z; w), τ j∗(z; w), τδ),

j(z; w) = J(z; w, τh∗(z; w), τ j∗(z; w), τδ).

To simplify the exposition, we divide the proof into a sequence of steps.

Proposition I.1. Let x := (z; w). If there exist two functions h(z; w) and j(z; w) satisfying (I.11), (I.12),

(I.13) and (I.14) given the continuation sets (I.15) and (I.16), then

τh∗(x) = inf
{

t ≥ 0 : zt /∈ Zh(w)
}

,

τ j∗(x) = inf
{

t ≥ 0 : zt /∈ Z j(w)
}

form a nontrivial Nash equilibrium and

h(z; w) = H(x, τh∗(x), τ j∗(x), τδ), j(z; w) = J(x, τh∗(x), τ j∗(x), τδ).

Moreover, if (τh∗(x), τ j∗(x)) is a nontrivial Nash equilibrium, then h(z; w) and j(z; w) satisfy (I.11) to

(I.14).

Proof. Variational inequalities as sufficient conditions for Nash Equilibrium. First, we prove that

if h(z; w) and j(z; w) satisfy (I.11) to (I.14), then h(z; w) = H(x, τh∗(x), τ j∗(x), τδ) ≥ H(x, τh(x), τ j∗(x), τδ)

for any τh ∈ T . The proof of the statement that j(z; w) = J(x, τh∗(x), τ j∗(x), τδ) ≥ J(x, τh∗(x), τ j(x), τδ),

for any τ j ∈ T , follows the same arguments.

Step 1: Here, we show that h(z; w) ≥ H(x, τh(x), τ j∗(x), τδ). Let τh be any stopping time (not

necessarily the optimal). Without loss of generality, we restrict the attention to τh ≤ τ(−∞,a), where
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τ(−∞,a) = inf{t > 0 : zt /∈ (−∞, a)}. Intuitively, it is never optimal for the worker to stay in the

job at wage w when productivity is sufficiently large. Let Uk ⊂ R be an increasing sequence of

bounded sets s.t. ∪∞
k=1Uk = R. Let τk = inf {t > 0 : zt /∈ Uk}. Since each Uk is bounded, we do not

need to assume compact support of the function to apply Proposition A.1. Applying Dynkin’s

Lemma to the stopping time τh
k = τh ∧ τ j∗ ∧ τδ ∧ τk,

E[e−ρτh
k h(xτh

k
)|z0 = z] = h(z; w) + E

[ˆ τh
k

0
Ahh(zt; w)dt|z0 = z

]
.

Using condition (I.13), we have that h(z; w) ≥ u(z) for all z ∈ Z j(w). Moreover, h(z; w) = u(z) for

all z ∈ (Z j(w))c. Therefore, h(z; w) ≥ u(z) for all z ∈ R. Thus, we have that E[e−ρτh
k h(zτh

k
; w)|z0 =

z] ≥ E[e−ρτh
k u(zτh

k
)|z0 = z]. Thus,

E[e−ρτh
k u(zτh

k
)|z0 = z]− E

[ˆ τh
k

0
Ahh(zt; w)dt|z0 = z

]
≤ h(z; w).

From condition (I.13) , we have Ahh(z; w) + ew ≤ 0 for all z. Thus,

E

[ˆ τh
k

0
e−ρtew dt|z0 = z

]
≤ −E

[ˆ τh
k

0
Ahh(z; w)dt|z0 = z

]
.

Using this result

E

[
e−ρτh

k u(zτh
k
) +

ˆ τh
k

0
e−ρtew dt|z0 = z

]
≤ h(z; w)

Now, we take the limit k → ∞. It is easy to see that
´ τh∧τ j∗∧τδ∧τk

0 e−ρt+w dt ≤ 1
ρ ew a.e., so using the

dominated convergence theorem limk→∞ E
[´ τh∧τ j∗∧τδ∧τk

0 e−ρt+w dt|z0 = z
]
= E

[´ τh∧τ j∗∧τδ

0 e−ρt+w dt|z0 = z
]
.

As we show below, u(z) ∝ ez and since ezt ≤ ea for all t ≤ τh ≤ τ(−∞,a), we have that

0 ≤ e−ρtu(zt) ≤ ea. Applying the monotone convergence theorem, we have that

lim
k→∞

E
[
e−ρ(τh∧τ j∗∧τδ∧τk)u(zτh∧τ j∗∧τδ∧τk

)|z0 = z
]
= E

[
e−ρ(τh∧τ j∗∧τδ)u(zτh∧τ j∗∧τδ)|z0 = z

]
.

Therefore, taking the limit k → ∞, we finally obtain

h(z; w) ≥ H(x, τh(x), τ j∗(x), τδ).

Step 2: Now, we show that h(z; w) = H(x, τh∗(x), τ j∗(x), τδ). Applying Proposition A.1 to the
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stopping time τh∗
k = τh∗ ∧ τ j∗ ∧ τk ∧ τδ we obtain

E[e−ρτh∗
k h(zτh∗

k
; w)|z0 = z] = h(z; w) + E

[ˆ τh∗
k

0
Ahh(zt; w)dt|z0 = z

]
.

For all t < τh∗
k , we have that u(z) < h(z; w). Therefore, by (I.13), Ahh(z; w) + ew = 0 for all z. Thus,

E

[
e−ρτh∗

k h(zτh∗
k

; w) +

ˆ τh∗
k

0
e−ρtew dt|z0 = z

]
= h(z; w).

Taking the limit k → ∞ and following similar arguments as above, we obtain

E

[
e−ρ(τh∗∧τ j∗∧τδ)h(zτh∗∧τ j∗∧τδ ; w) +

ˆ τh∗∧τ j∗∧τδ

0
e−ρtew dt|z0 = z

]
= h(z; w).

which, given Proposition A.2, is equivalent to

E

[
e−(ρ+δ)(τh∗∧τ j∗)h(zτh∗∧τ j∗ ; w) +

ˆ τh∗∧τ j∗

0
e−(ρ+δ)t(δu(zt) + ew)dt|z0 = z

]
= h(z; w).

Since zτh∗∧τ j∗ ∈ ∂(Zh(w∗(z)) ∩ Z j(w∗(z))) and h(·; w) is continuous, we have that

E

[
e−(ρ+δ)(τh∗∧τ j∗)u(zτh∗∧τ j∗ ; w) +

ˆ τh∗∧τ j∗

0
e−(ρ+δ)t(δu(zt) + ew)dt|z0 = z

]
= h(z; w).

and h(z; w) = H(x, τh∗(x), τ j∗(x), τδ).

Variational inequalities as sufficient conditions for Nontrivial Nash Equilibrium. This part of

the proof is constructive. Define WDh(w) = {z ∈ R : 0 < ew +Ahu(z)} and τ⋆(z; w) = inf{t ≥ 0 :

zt /∈ WDh(w), z0 = z}. Now, we check that this set is where continuation is a weakly dominating

strategy. Applying Dynkin’s Lemma (and using similar arguments as before), for any stopping

time τ we obtain

E
[
e−ρτu(zτ)|z0 = z

]
= u(z) + E

[ˆ τ(z;w)

0
Ahu(zt)dt|z0 = z

]
.

Using τ(z; w) = min
{

τ⋆(z; w), τ j(z; w), τδ(z; w)
}

,

u(z) = E
[
e−ρτ(z;w)u(zτ(z;w))|z0 = z

]
− E

[ˆ τ(z;w)

0
Ahu(zt)dt|z0 = z

]
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≤ E
[
e−ρτ(z;w)u(zτ(z;w))|z0 = z

]
+ E

[ˆ τ(z;w)

0
e−ρt+w dt|z0 = z

]
.

with strict inequality, if Pr(τ(z; w) > 0) = 1. Thus, staying in the match weakly dominates

dissolving the match.

Variational inequalities as necessary conditions. Now, we prove that if τh∗(x) and τ j∗(x) is

a nontrivial Nash equilibrium, then h(z; w), j(z; w) satisfy (I.11) to (I.16). Notice that under the

assumption that τ j and τh are characterized by continuation sets, we can focus on these sets to

prove conditions (I.11) to (I.16). By definition, we have that

h(z; w) = max
τh

E

[ˆ τh∧τ j∗∧τδ

0
e−ρt+w dt + e−ρ(τh∧τ j∗∧τδ)u(zτh∧τ j∗∧τδ ; w)dt|z0 = z

]
. (I.17)

• Condition (I.11): If z ∈ (Z j(w))c, then τ j∗(x) = 0 and Pr[min{τh∗(x), τ j∗(x), τδ(x)} ≤
τ j∗(x)] = 1, and h(z; w) = u(z). A similar argument holds for the firm.

• Condition (I.13): Observe that this condition is the best response of the worker, given that the

firm continues. See Øksendal (2007) and Brekke and Øksendal (1990) for a discussion of the

necessity of the smooth pasting condition.

• Condition (I.15): For this part, we will assume that u is C2 and the set of productivities for

which ew +Ahu(z) = 0 has measure zero (we show this property in Lemma 1). To show

this, we need to characterize the continuation set in the Nash equilibrium that survives

the iterated elimination of weakly dominated strategies. First, from the problem (I.17), if

Pr(τ j∗(x) > 0) = 1, then Pr(τh∗(x) > 0) = 1 iff.

z ∈ int {z ∈ R : h(z; w) > u(z)} .

Next, by way of contradiction, assume that staying in the match weakly dominates leaving in

the state (z; w) and

0 < ew +Ahu(z). (I.18)

Notice that here we are ignoring the case ew +Ahu(z) = 0 since it has measure 0. If u(z) ∈ C2,

define an open set U, containing the chosen (z; w), where ew +Ahu(z) > 0 and take any
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stopping time τU . Then, applying Dynkin’s Lemma, we obtain

E
[
e−ρτU u(zτU )|z0 = z

]
= u(z) + E

[ˆ τU

0
Au(zt)dt|z0 = z

]
.

Using the inequality in (I.18),

u(z) = E
[
e−ρτU u(zτ)|z0 = z

]
− E

[ˆ τU

0
Au(zt)dt|z0 = z

]
> E

[
e−ρτU u(zτU )|z0 = z

]
+ E

[ˆ τU

0
e−ρt+w dt|z0 = z

]
.

Thus, staying in the match is dominated for τU , arriving at a contradiction.

Proposition I.2. Define

w∗(z) = arg max
w

f (θ(z; w))(h(z; w)− u(z)).

and τu∗ = inf{t ≥ 0 : ∆N f (θ(zt;w∗(zt)))
t = 1} where N f (θ(zt;w∗(zt)))

t is a Poisson counter with arrival rate

f (θ(zt; w∗(zt))). The function u(z) satisfies u(z) ∈ C2(R) and (I.10) iff.

u(z) = max
{wt}τu

t=0

E

[ˆ τu

0
e−ρtB(zt)dt + e−ρτu

h(zτu ; w)

]
.

Proof. The proof is the standard optimality conditions in the HJB (see Øksendal, 2007).

Lemma I.1. Assume u(z), h(z; w), j(z; w), θ(z; w) satisfy (I.10)–(I.14) given the continuation sets (I.15)

and (I.16). Then
{

τh∗, τ j∗, {w∗
t }τu

t=0
}

with τh∗(x) = inf
{

t ≥ 0 : zt /∈ Zh(w)
}

, τ j∗(x) = inf
{

t ≥ 0 : zt /∈ Z j(w)
}

,

and w∗(z) = arg maxw f (θ(z; w))(h(z; w)− u(z)) is a BRE with

h(z; w) = H(x, τh∗(x), τ j∗(x), τδ),

j(z; w) = J(x, τh∗(x), τ j∗(x), τδ),

u(z) = U(z).

If {H(z; w, τ⃗m), J(z; w, τ⃗m), U(z)}, market tightness θ(z; w), and policy functions
{

τh∗(z; w), τ j∗(z; w), w∗(zt)
}

I13



is a BRE with

h(z; w) = H(x, τh∗(x), τ j∗(x), τδ),

j(z; w) = J(x, τh∗(x), τ j∗(x), τδ),

u(z) = U(z),

then u(z), h(z; w), j(z; w), θ(z; w) satisfy (I.10)—(I.14) given the continuation sets (I.15) and (I.16).

Proof. The proof is a combination of Propositions I.1 and I.2.

I.3 Equilibrium Value Functions and Continuation Sets

Figure I1 shows the equilibrium values and continuation sets of the worker (blue solid line) and

the firm (red solid line) in our baseline model.

FIGURE I1. EQUILIBRIUM VALUE FUNCTIONS AND CONTINUATION SETS

ŵ

Ŵ(ŵ) Ĵ(ŵ)

ŵ− ŵ+0log(ρ̂Û)

Notes: The figure plots the equilibrium value functions of the firm (i.e., Ĵ(ŵ)) and the employed worker (i.e., Ŵ(ŵ)) as
a function of ŵ = w − z. The blue and red solid lines show the value function of the employed worker and the value
function of the firm, respectively. The dotted vertical lines mark the boundaries of the firms’ continuation set (−∞, ŵ+)

and the worker’s continuation set (ŵ−, ∞). Source: Model simulations.
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II Additional Results for Section 3: Aggregate Shocks with Wage-

Rigidity-Induced Job Separations

II.1 A Monetary Economy with Exogenous Money Supply

We modify four aspects of the baseline model. First, we introduce preferences over real money

holdings:

E0

[ˆ ∞

t=0
e−ρt

(
Cit + µ log

(
M̂it

Pt

))
dt
]

, (II.1)

where M̂it denotes the money holdings of worker i, Pt is the relative price of the consumption good

in terms of money, and µ is a preference weight on real money holdings.

Second, workers face a budget constraint that reflects ownership of firms and access to complete

financial markets. Given a history of labor market decisions regarding job search, job acceptance,

and job dissolution, lmt
i := {lmit′}t

t′=0, a worker’s private income is Yt(lmt
i), which equals the

nominal value of the wage while employed and the nominal value of home production while unem-

ployed. In addition, each worker receives transfers of Tit from the government and fully diversified

claims on firms’ profits. On the spending side, a worker pays for consumption expenditures PtCit

and the opportunity cost of holding money it M̂it at a given interest rate it ≥ 0. Letting Qt denote

the time-0 Arrow-Debreu price under complete markets, the worker’s budget constraint is

E0

[ˆ ∞

t=0
Qt
(

PtCit + it M̂it − Yt(lmt
i)− Tit

)
dt
]
≤ Mi0. (II.2)

The worker’s problem is to choose a consumption stream {Cit}∞
t=0, labor market decisions {lmit}∞

t=0,

and money holdings {M̂it}∞
t=0 to maximize utility (II.1) subject to the budget constraint (II.2) at

time 0.

Third, the economy is subject to shocks to the aggregate money supply Mt. We assume that the

log of the aggregate money supply mt follows a Brownian motion with drift π and volatility ζ:

dmt = π dt + ζ dWm
t ,

where Wm
t is a Wiener process. Fourth and finally, we assume that the vacancy posting cost K̃Zt

and the value of home production B̃Zt are both denominated in real terms.

Given these modifications, the market-clearing conditions for goods and money, respectively,
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are

ˆ 1

0

(
Cit + θit1[Eit = u]K̃Zit

)
di =

ˆ 1

0

(
Zit1[Eit = h] + B̃Zit1[Eit = u]

)
di, (II.3)

ˆ 1

0
M̂it di = Mt, (II.4)

where 1[·] is an indicator function that takes a logical expression as its argument. Equation (II.3)

states that the sum of real consumption and recruiting expenses must equal the total market and

home production of the good. Equation (II.4) states that the total demand of nominal money

holdings across workers equals the aggregate money supply.

The following proposition characterizes the worker’s problem in this monetary economy.

Proposition II.1. Let Q0 = 1 be the numéraire and assume µ = ρ + π − ζ2/2. Then, Pt = Mt and the

value of a worker at time 0 is

V0 = max
{lmit}∞

t=0

E0

[ˆ ∞

0
e−ρt Y(lmt

i)

Pt
dt
]
+ k,

where k is a constant independent of the worker’s choices, capturing the present discounted value of financial

wealth.

Proposition II.1 shows that the price level equals the aggregate money supply and that maximiz-

ing (II.1) subject to (II.2) is equivalent to maximizing expected discounted real income. The result

relies on three assumptions: (i) complete markets, (ii) worker preferences that are quasi-linear in

consumption, and (iii) the log of aggregate money supply following a random walk with drift. The

first two assumptions imply a constant marginal value of nominal wealth, which, combined with

the last assumption, leads to a constant real interest rate and a one-for-one pass-through of money

shocks to inflation.

Proof. Let V0 be the present discounted value of the optimal plan. The worker’s value is given by

V0 = max
{Cit,M̂it,lmit}∞

t=0

E0

[ˆ ∞

t=0
e−ρt

(
Cit + µ log

(
M̂it

Pt

))
dt
]

,

subject to

E0

[ˆ ∞

t=0
Qt
(

PtCit + it M̂it − Y(lmt
i)− Tit

)
dt
]
≤ Mi0. (II.5)

The first-order conditions for consumption and money holdings, combined with the definition of
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the nominal interest rate, are given by

e−ρt = ΛiQtPt, (II.6)

µ
e−ρt

M̂it
= ΛiQtit, (II.7)

E[dQt] = −itQt dt. (II.8)

Here, Λi is the Lagrange multiplier of (II.5) for each worker. Equation (II.6) shows that Λi = Λ for

all i. Taking integrals over (II.7), we can replace M̂ti = Mt. With these results, we guess and verify

the following equilibrium outcomes

Pt = Ap Mt,

it = Ai, (II.9)

Qt =
AQe−ρt

Mt
.

given a set of constants Ap, Ai, and AQ. Using the guess in (II.6) and (II.7)

1 = ΛAQ Ap, (II.10)

µ = ΛAQ Ai. (II.11)

Equations (II.10) and (II.11) provide the equilibrium values for AQ and Ap given Ai. Applying Ito’s

lemma and using the guess over (II.8)

dQt = AQ d
(

e−ρt

elog(Mt)

)
,

= −ρAQ
(

e−ρt

elog(Mt)

)
dt − AQ e−ρt

elog(Mt)
dlog(Mt) + AQ e−ρt

2elog(Mt)
(dlog(Mt))

2,

= −ρQt dt − πQt dt − ζQt dWm
t +

ζ2

2
Qt dt.

Thus, using the guess (II.9) and E[dWm
t ] = 0

E[dQt] = −
(

ρ + π − ζ2

2

)
︸ ︷︷ ︸

=Ai

Qt dt.
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If we take as numéraire Q0 = 1, then we verify the guess with µ = ρ + π − ζ2

2 :

AQ = M0,

Ai = ρ + π − ζ2

2
= µ,

Λ =
µ

M0(ρ + π − ζ2/2)
=

1
M0

,

Ap =
ρ + π − ζ2/2

µ
= 1.

Using the budget constraint (II.5)

E0

[ˆ ∞

0
Qt
(

PtCit + it M̂it − Y(lmt
i)− Tit

)
dt
]
= Mi0 ⇐⇒

E0

[ˆ ∞

0

M0e−ρt

Mt

(
MtCit + µMt − Y(lmt

i)− Tit
)

dt
]
= Mi0 ⇐⇒

M0E0

[ˆ ∞

0
e−ρtCit dt

]
= Mi0 + M0E0

[ˆ ∞

0
e−ρt Y(lmt

i)

Mt

]
+ M0E0

[ˆ ∞

0
e−ρt Tit

Mt
dt
]
− M0

ρ
µ ⇐⇒

E0

[ˆ ∞

0
e−ρtCit dt

]
= E0

[ˆ ∞

0
e−ρt Y(lmt

i)

Mt

]
+ ki,

where ki is a constant independent of the worker’s policies. Thus,

V0 = max
{Cit,M̂it,lmit}∞

t=0

E0

[ˆ ∞

0
e−ρt

(
Cit + µ log

(
M̂it

Pt

))
dt
]

,

= max
{Cit,lmit}∞

t=0

E0

[ˆ ∞

0
e−ρt

(
Cit + µ log

(
µ

ρ + π − ζ2/2

))
dt
]

,

= max
{Cit,lmit}∞

t=0

E0

[ˆ ∞

0
e−ρtCit dt

]
,

= max
{lmit}∞

t=0

E0

[ˆ ∞

0
e−ρt Y(lmt

i)

Mt

]
+ ki.

II.2 A Monetary Economy with a Taylor Rule and Interest Rate Shocks

We now show that our previous environment is isomorphic to an economy in which the monetary

authority sets the interest rate by following a Taylor rule. As in Galí (2015), we study a cashless

economy in discrete time where t ∈ T = {0, ∆, 2∆, 3∆, . . . }.
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Preferences are the same as in Section 2:

E0

[
∑
t∈T

e−ρtCit∆

]
, (II.12)

where e−ρt denotes the discount factor. Workers face a budget constraint that reflects ownership of

firms and access to complete financial markets. Given a history of labor market decisions regarding

job search, job acceptance, and job dissolution, lmt
i := {lmit′}t

t′=0, a worker’s private income is

Yt(lmt
i), which equals the nominal value of the wage while employed and the nominal value of

home production while unemployed. In addition, each worker receives transfers of Tit from the

government and fully diversified claims on firms’ profits. On the spending side, a worker pays for

consumption expenditures PtCit. Letting Qt denote the time-0 Arrow-Debreu price under complete

markets, the worker’s budget constraint is

E0

[
∑
t∈T

Qt
(

PtCit − Yt(lmt
i)− Tit

)
∆

]
≤ 0. (II.13)

The worker’s problem is to choose a consumption stream {Cit}∞
t=0 and labor market decisions

{lmit}∞
t=0 to maximize utility (II.12) subject to the budget constraint (II.13) at time 0.

In this microfoundation, the central bank sets the nominal interest rate following a Taylor rule

given by

it = ρ + π̄ + ϕπ(πt − π̄) + ιt

Here, it is the nominal interest rate, π̄ is the inflation target, and ιt is a compound Poisson process

such that with probability e−λ∆ it is equal to zero and with probability 1 − e−λ∆ it is equal to ϵtσi/∆,

where ϵt is an i.i.d. random variable with mean zero and standard deviation of 1.

Finally, we assume that the vacancy posting cost K̃Zt and the value of home production B̃Zt are

both denominated in real terms. The market-clearing condition for the goods market is still given

by (II.3).

The following proposition characterizes the worker’s problem in this monetary economy.

Proposition II.2. Take the limit ∆ ↓ 0. Then,

dlog(Pt) = π̄ dt − σi

ϕπ
ϵt dNt,
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where Nt is a Poisson process with intensity λ. The value of a worker at time 0 is

V0 = max
{lmit}∞

t=0

E0

[ˆ ∞

0
e−ρt Y(lmt

i)

Pt
dt
]
+ ki,

where ki is a constant independent of the worker’s choices, which captures the present discounted value of

financial wealth.

Proof. Let V0 be the present discounted value of the optimal plan. The worker’s value is given by

V0 = max
{Cit,lmit}∞

t=0

E0

[
∑
t∈T

e−ρtCit∆

]
,

subject to

E0

[
∑
t∈T

Qt
(

PtCit − Yt(lmt
i)− Tit

)
∆

]
≤ 0. (II.14)

The first-order condition for consumption is given by

e−ρt = ΛiQtPt, (II.15)

Here, Λi is the Lagrange multiplier of (II.14) for worker i. Equation (II.15) shows that Λi = Λ for

all i. Evaluating (II.15) at periods t and t + ∆ and taking their ratio, we have

e−ρ∆ =
Qt+∆Pt+∆

QtPt
⇐⇒ Et

[
Pt

Pt+∆
e−ρ∆

]
= Et

[
Qt+∆

Qt

]

By definition of the interest rate, the lack of arbitrage opportunities with the nominal bond offered

by the monetary authority Et

[
Qt+∆

Qt

]
= e−it∆, and the Taylor rule, we have the following system of

equations:

1 = eit∆e−ρ∆Et

[
Pt

Pt+∆

]
and it = ρ + π̄ + ϕπ(πt − π̄) + ιt.

Since Pt+∆ = Pteπt+∆∆, from the first equation we have that eρ∆ = eit∆Et
[
e−πt+∆∆]. Making a first

order Taylor approximation when ∆ ↓ 0, we obtain ρ = it − Et [πt+∆]. Replacing in the expression

for it from the Taylor rule,

πt = π̄ − ιt

ϕπ
+

1
ϕπ

Et [πt+∆ − π̄] .

Iterating this equation forward, inflation can be expressed as a function of the current and future
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shocks:

πt − π̄ = −Et

[
∞

∑
j=0

(
1

ϕπ

)j∆ ιt+j

ϕπ

]
.

Since Et
[
ιt+j
]
= 0, we have that πt − π̄ = − ιt

ϕπ
, and therefore

log(Pt+∆) = log(Pt) + πt+∆∆ = log(Pt) + π̄∆ − ιt∆
ϕπ

= log(Pt) + π̄∆ − Bt
σi

ϕπ
ϵt,

where Bt is a random variable equal to one with probability 1 − e−λ∆ and zero otherwise. Taking

the limit ∆ ↓ 0, we have a continuous-time compound Poisson process for the aggregate consumer

price index

dlog(Pt) = π̄ dt − σi

ϕπ
ϵt dNt,

where Nt is a Poisson process with intensity λ. Combining the fact that e−ρt = ΛQtPt with the

worker’s budget constraint:

E0

[
∑
t∈T

e−ρtCit∆

]
= ΛE0

[
∑
t∈T

QtPtCit∆

]

= ΛE0

[
∑
t∈T

Qt(Yt(lmt
i) + Tit)∆

]

= ΛE0

[
∑
t∈T

QtYt(lmt
i)∆

]
+ ΛE0

[
∑
t∈T

QtTit∆

]
︸ ︷︷ ︸

=ki

= E0

[
∑
t∈T

e−ρt Yt(lmt
i)

Pt
∆

]
+ ki.

Taking the limit when ∆ ↓ 0, we have the desired result.

II.3 Characterizing gh(∆z) and gu(∆z)

Proposition II.3. Assume δ > 0. Then, gh(∆z) and gu(∆z) are given by

gh(∆z) = EGh


eβ1(δ)(∆z+∆−)−eβ2(δ)(∆z+∆−)

eβ1(δ)∆
−−eβ2(δ)∆

− if ∆z ∈ (−∆−, 0]

eβ1(δ)(∆z−∆+)−eβ2(δ)(∆z−∆+)

e−β1(δ)∆
+−e−β2(δ)∆

+ if ∆z ∈ [0, ∆+)

gu(∆z) = (1 − E)Gu

 eβ2( f (θ̂(ŵ∗)))∆z if ∆z ∈ (−∞, 0]

eβ1( f (θ̂(ŵ∗))∆z if ∆z ∈ [0, ∞)
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where

β1(x) =
−γ −

√
γ2 + 2σ2x
σ2 , β2(x) =

−γ +
√

γ2 + 2σ2x
σ2 ,

E =
f (θ̂(ŵ∗))

f (θ̂(ŵ∗)) + δ + σ2

2 Gh

[
β1(δ)−β2(δ)

eβ1(δ)∆
−−eβ2(δ)∆

− − β1(δ)−β2(δ)

e−β1(δ)∆
+−e−β2(δ)∆

+

] ,

Gh =

 eβ1(δ)∆
−−1

β1(δ)
− eβ2(δ)∆

−−1
β2(δ)

eβ1(δ)∆− − eβ2(δ)∆− +

1−e−β1∆+

β1(δ)
− 1−e−β2∆+

β2(δ)

e−β1(δ)∆+ − e−β2(δ)∆+

−1

,

Gu =
[
−β1( f (θ̂(ŵ∗)))−1 + β2( f (θ̂(ŵ∗)))−1

]−1
.

Proof. Let us write the KFE and border conditions:

δgh(∆z) = γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z) ∀∆z ∈ (−∆−, ∆+)/{0} (II.16)

gh(−∆−) = gh(∆+) = 0, (II.17)

f (θ̂(ŵ∗))gu(∆z) = γ(gu)′(∆z) +
σ2

2
(gu)′′(∆z) ∀∆z ∈ (−∞, ∞)/{0}, (II.18)

lim
∆z→−∞

gu(∆z) = lim
∆z→∞

gu(∆z) = 0, (II.19)

1 =

ˆ ∞

−∞
gu(∆z)d∆z +

ˆ ∆+

−∆−
gh(∆z)d∆z, (II.20)

f (θ̂(ŵ∗))(1 − E) = δE +
σ2

2

[
lim

∆z↓−∆−
(gh)′(∆z)− lim

∆z↑∆+
(gh)′(∆z)

]
, (II.21)

gh(∆z), gu(∆z) ∈ C.

We guess and verify the proposed solution. Substituting the guess for gh(∆z) in (II.16) for

∆z < 0, we have

0 = −δEGh
eβ1(δ)(∆z+∆−)

eβ1(δ)∆− − eβ2(δ)∆− + γβ1(δ)EGh
eβ1(δ)(∆z+∆−)

eβ1(δ)∆− − eβ2(δ)∆− + EGh
σ2

2
β1(δ)

2 eβ1(δ)(∆z+∆−)

eβ1(δ)∆− − eβ2(δ)∆− ⇐⇒

0 = −δ + γβ1(δ) +
σ2

2
β1(δ)

2,

mutatis mutandis, for the terms that include β2(δ). Given the definition of β1(δ), the guess satisfies

(II.16). A similar argument applies when (II.16) is evaluated at ∆z > 0. It is easy to verify that the

boundary conditions (II.17) are satisfied and that gh(∆z) is continuous at ∆z = 0. Following the
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same steps for gu(∆z), we verify conditions (II.18) and (II.19). Next, we verify condition (II.20):

ˆ ∞

−∞
gu(∆z)d∆z +

ˆ ∆+

−∆−
gh(∆z)d∆z

= (1 − E)Gu

[ˆ 0

−∞
eβ2( f (θ̂(ŵ∗)))∆z d∆z +

ˆ ∞

0
eβ1( f (θ̂(ŵ∗)))∆z d∆z

]
+ . . .

+ EGh

[ˆ 0

−∆−

eβ1(δ)(∆z+∆−) − eβ2(δ)(∆z+∆−)

eβ1(δ)∆− − eβ2(δ)∆− d∆z +
ˆ ∆+

0

eβ1(δ)(∆z−∆+) − eβ2(δ)(∆z−∆+)

e−β1(δ)∆+ − e−β2(δ)∆+ d∆z

]

= (1 − E)Gu

[
1 − lim∆z→−∞ eβ2( f (θ̂(ŵ∗)))∆z

β2( f (θ̂(ŵ∗)))
+

lim∆z→∞ eβ1( f (θ̂(ŵ∗)))∆z − 1
β1( f (θ̂(ŵ∗)))

]
+ . . .

+ EGh

 eβ1(δ)∆
−−1

β1(δ)
− eβ2(δ)∆

−−1
β2(δ)

eβ1(δ)∆− − eβ2(δ)∆− +

1−e−β1∆+

β1(δ)
− 1−e−β2∆+

β2(δ)

e−β1(δ)∆+ − e−β2(δ)∆+

 = (1 − E) + E = 1.

Finally, combining condition (II.21) with the definition of gh(∆z), the employment rate is

E =
f (θ̂(ŵ∗))

f (θ̂(ŵ∗)) + δ + σ2

2 Gh

[
β1(δ)−β2(δ)

eβ1(δ)∆
−−eβ2(δ)∆

− − β1(δ)−β2(δ)

e−β1(δ)∆
+−e−β2(δ)∆

+

] .

II.4 Characterizing lw(∆w)

Proposition II.4. The distribution of log nominal wage changes satisfies

lw(∆w) = Gu

[
β2( f (θ̂(ŵ∗)))e−β2( f (θ̂(ŵ∗)))∆wΓ2(∆w) + β1( f (θ̂(ŵ∗)))e−β1( f (θ̂(ŵ∗)))∆wΓ1(∆w)

]
with

(Γ1(c), Γ2(c)) =
(ˆ −c

−∞
e−β1( f (θ̂(ŵ∗))))xḠh(x)dx,

ˆ ∞

−c
e−β2( f (θ̂(ŵ∗)))xḠh(x)dx

)
.

Proof. Fix a date t0 and focus on a newly hired worker. Then, the distribution of wage changes

between two new jobs is given by

Pr(∆w ≤ c) = Pr(wt0+τm+τu − wt0 ≤ c)

=(1) Pr(wt0+τm+τu − zt0+τm+τu − (wt0 − zt0) + (zt0+τm+τu − zt0) ≤ c)

=(2) Pr(ŵ∗ − ŵ∗ + (zt0+τm+τu − zt0) ≤ c)

=(3) Pr(−(∆zh + ∆zu) ≤ c),
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where ∆zh and ∆zu denote cumulative productivity shocks during completed employment and

unemployment spells, respectively. Here, step (1) adds and subtracts productivity at the beginning

of both job spells. In step (2), we use the result that ŵ∗ is constant across jobs. Step 3 uses the facts

that τu and the Brownian motion increments are independent of the filtration Fτu . Therefore, the

distributions of cumulative productivity shocks for completed employment and unemployment

spells are given by

Ḡh(∆z) =


1 if ∆z ∈ [∆+, ∞)

1
sE
[

σ2

2 lim∆z↓−∆−(gh)′(∆z) + δ
´ ∆z
−∆− gh(x)dx

]
if ∆z ∈ [−∆−, ∆+)

0 if ∆z ∈ (−∞,−∆−)

ḡu(∆z) = Gu

 eβ2( f (θ̂(ŵ∗)))∆z if ∆z ∈ (−∞, 0]

eβ1( f (θ̂(ŵ∗)))∆z if ∆z ∈ [0, ∞)

Thus,

Pr(∆w ≤ c)

= Pr(−(∆zu + ∆zh) ≤ c)

= 1 − Pr(∆zu + ∆zh ≤ −c)

=(1) 1 −
ˆ ∞

−∞
Ḡh(−(c + ∆z))ḡu(∆z)d∆z

=(2) 1 − Gu

[ˆ 0

−∞
eβ2( f (θ̂(ŵ∗)))∆zḠh(−(c + ∆z))d∆z +

ˆ ∞

0
eβ1( f (θ̂(ŵ∗)))∆zḠh(−(c + ∆z))d∆z

]
=(3) 1 + Gu

[ˆ −c

∞
e−β2( f (θ̂(ŵ∗)))(c+x)Ḡh(x)dx +

ˆ −∞

−c
e−β1( f (θ̂(ŵ∗)))(c+x)Ḡh(x)dx

]
=(4) 1 − Gu

[
e−β2( f (θ̂(ŵ∗)))c

ˆ ∞

−c
e−β2( f (θ̂(ŵ∗)))xḠh(x)dx + e−β1( f (θ̂(ŵ∗)))c

ˆ −c

−∞
e−β1( f (θ̂(ŵ∗)))xḠh(x)dx

]
.

In step (1), we use the independence of ∆zu and ∆zh. In step (2), we use the definition of ḡu(∆z).

In step (3), we integrate by substituting x = −c − ∆z, and in step (4), we use the properties of an

integral. The last step involves defining

(Γ1(c), Γ2(c)) =
(ˆ −c

−∞
e−β1( f (θ̂(ŵ∗)))xḠh(x)dx,

ˆ ∞

−c
e−β2( f (θ̂(ŵ∗)))xḠh(x)dx

)
.
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II.5 Characterizing Eh[∆zn]

Let Ēh[·] and Ēu[·] be the expectation operators under the distributions ḡh(∆z) and ḡu(∆z), respec-

tively.

Proposition II.5. Define the weights ωhn(∆z) = ∆zn

Ēh[∆zn]
with the property that

Ēh

[
ωhn(∆z)

]
= 1.

If γ + χ = 0, then Eh[(∆z)n] can be recovered from

Eh[(∆z)n] =
2E

(n + 1)(n + 2)
Ēh

[
(∆z)nωh2(∆z)

]
. (II.22)

If γ + χ ̸= 0, then Eh[(∆z)n] can be recovered recursively from

Eh[(∆z)n] =
E

n + 1
Ēh[(∆z)nωh1(∆z)] +

σ2n
2γ

Eh[(∆z)n−1].

The moments Ēh
[
(∆z)nωhk(∆z)

]
=

Ēh[(∆z)n+k]
Ēh[(∆z)k]

can be recovered from the following linear system of

equations:

ED [∆wn] = (−1)n
n

∑
i=0

 n

i

 Ēh[∆zi]Ēu[∆zn−i],

Ēu[(∆z)n−i] =
(n − i)!

Ln−i
1

(
L2 + L−1

2

) (L−(n−i+1)
2 − (−L2)

(n−i+1)
)

,

where

L1 =

√
2 f (θ̂(ŵ∗))

σ2 and L2 =

√√√√√ (γ + χ) +
√
(γ + χ)2 + 2σ2 f (θ̂(ŵ∗))

−(γ + χ) +
√
(γ + χ)2 + 2σ2 f (θ̂(ŵ∗))

.

Proof. We divide the proof into 3 steps.

Step 1. We first show that

Eh[(∆z)n] =
E

n + 1
Ēh[(∆z)nωh1(∆z)]− σ2n

2(γ + χ)
Eh[(∆z)n−1].

when (γ + χ) ̸= 0. For the case with (γ + χ) = 0, see Baley and Blanco (2021).

Let us define Yt = (∆zt)n. The law of motion for ∆zt is given by d∆zt = −(γ + χ)dt + σ dW z
t .

II11



Applying Itô’s Lemma, we obtain

dYt = n(∆zt)
n−1 d∆zt +

1
2

n(n − 1)(∆zt)
n−2(d∆zt)

2

=

[
−(γ + χ)n(∆zt)

n−1 +
σ2

2
n(n − 1)(∆zt)

n−2
]

dt + nσ(∆zt)
n−1 dW z

t

Thus,

(∆zτm)n = −(γ + χ)n
ˆ τm

0
(∆zt)

n−1 dt +
σ2

2
n(n − 1)

ˆ τm

0
(∆zt)

n−2 dt + n
ˆ τm

0
(∆zt)

n−1σ dW z
t .

Following the same arguments as in the proof of Proposition B.6 and using the Renewal Principle

to have ED [τm] = 1/s, we obtain

Ēh[(∆z)n] = −(γ + χ)nED [τm]
Eh[(∆z)n−1]

E +
σ2n(n − 1)

2s
Eh[(∆z)n−2]

E

or equivalently

Eh[(∆z)n] = − E
(γ + χ)ED [τm]

Ēh[(∆z)n+1]

n + 1
+

σ2n
2(γ + χ)

Eh[(∆z)n−1].

From Propostion B.6, we have (γ + χ)ED [τm] = −Ēh[(∆z)] and Ēh[(∆z)n+1]
Ēh[(∆z)] = Ēh[(∆z)nωh1(∆z)].

Thus,

Eh[(∆z)n] =
E

n + 1
Ēh[(∆z)nωh1(∆z)] +

σ2n
2(γ + χ)

Eh[(∆z)n−1].

Step 2. Here we show that

ED [∆wn] = (−1)n
n

∑
i=0

 n

i

 Ēh[∆zn]Ēu[∆zn−i].

Using the independence of cumulative productivity shocks during employment and unemploy-

ment,

ED [∆wn] = Ē[(−∆zh − ∆zu)n],

=
n

∑
i=0

 n

i

 Ē[(−∆zh)i(−∆uu)n−i],
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=
n

∑
i=0

 n

i

 Ēh[(−∆z)i]Ēu[(−∆z)n−i],

= (−1)n
n

∑
i=0

 n

i

 Ēh[∆zi]Ēu[∆zn−i],

Step 3. Here we show that

Ēu[(∆z)n−i] =
(n − i)!

Ln−i
1

(
L2 + L−1

2

) (L−(n−i+1)
2 − (−L2)

(n−i+1)
)

.

Let us depart from the definition of ḡu(∆z), which is given by

ḡu(∆z) =
[
−β1( f (θ̂(ŵ∗)))−1 + β2( f (θ̂(ŵ∗)))−1

]−1

 eβ2( f (θ̂(ŵ∗)))∆z if ∆z ∈ (−∞, 0]

eβ1( f (θ̂(ŵ∗))∆z if ∆z ∈ [0, ∞)

where β1(x) = −(γ+χ)−
√

(γ+χ)2+2σ2x
σ2 and β2(x) = −(γ+χ)+

√
(γ+χ)2+2σ2x

σ2 . This step consist of show-

ing that ḡu(∆z) is an asymmetric Laplace distribution with parameters

L1 =

√
2 f (θ̂(ŵ∗))

σ2 and L2 =

√√√√√ (γ + χ) +
√
(γ + χ)2 + 2σ2 f (θ̂(ŵ∗))

−(γ + χ) +
√
(γ + χ)2 + 2σ2 f (θ̂(ŵ∗))

The ratio between L1 and L2 is

L1

L2
= β2( f (θ̂(ŵ∗))).

The negative of the product between L1 and L2 is

−L1L2 = β1( f (θ̂(ŵ∗))).

Therefore, we can write ḡu(∆z)

ḡu(∆z) =
L1

L2 + L−1
2

 e
L1
L2

∆z if ∆z ∈ (−∞, 0]

e−L1L2∆z if ∆z ∈ [0, ∞),

which is the probability distribution function of an asymmetric Laplace distribution. It is a standard
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result that the n-th moment for an asymmetric Laplace distribution is given by

Ēu[(∆z)n] =
n!

Ln
1

(
L2 + L−1

2

) (L−(n+1)
2 − (−L2)

(n+1)
)

.
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III Additional Results for Section 4: Model Extension to Staggered

Wage Renegotiations

III.1 Generalized Wage Renegotiation Hazard

In this section, we generalize our model to the case of staggered wage renegotiations, which we

assume follow a Nash bargaining protocol with worker weight α and to occur at rate δr ≥ 0 à la

Calvo (1983). The generalized model nests as a special case the economy with fully rigid wages

(δr → 0) presented in the main text and also the polar opposite case with fully flexible wages

(δr → ∞). By convexifying between these two cases, the generalized model allows for arbitrary

frequencies of wage changes in employment that can be matched to the data. The generalized

model with staggered wage renegotiations yields several results but our main conclusion is that all

of our key insights extend to an environment with 0 < δr < ∞ subject to minor modifications.

In the baseline model, wages are completely rigid within a worker-firm match. We have chosen

to present and analyze this simplified model to enhance clarity and provide a first theoretical

foundation for analyzing several core aspects of the model. Nevertheless, this assumption is

unrealistic and affects our results. To address this limitation, we follow the approach of Gertler and

Trigari (2009) and extend the baseline model by incorporating staggered wage renegotiations à la

Calvo (1983) in a way consistent with the Hosios (1990) condition. The resulting insight is that all

our key findings can be extended to this more general environment. Importantly, almost all the

proofs can be extended to the model involving wage adjustments within a match with only minor

modifications. Next, we present a summary of how wage renegotiations within a match affect our

results.

Environment.

Here, we modify the baseline setup exclusively to permit wage renegotiations within a match.

Preferences, technology, and search frictions remain unchanged from those outlined in the main

text. Wage bargaining within a match is modeled by a Poisson process with a rate denoted by

δr ≥ 0. We assume that these renegotiations entail setting the wage within a worker-firm match

according to Nash bargaining, with the worker’s weight over the prevailing surplus at the time

of renegotiation given by α (i.e., equal to the elasticity of the matching function to satisfy Hosios

condition). As δr → 0, we recover the baseline model with fully rigid wages within a match. As

δr → ∞, the model transitions to the opposite extreme where wages are flexible and continuously

reset.
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Recursive Formulation.

Value Functions. The Hamilton-Jacobi-Bellman (HJB) equation of an unemployed worker is

still given by

ρu(z) = B̃ez + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2 + max
w

f (θ(z; w))[h(z; w)− u(z)].

The HJB equation of a worker employed at log wage w with log productivity z ∈ Z j(w), for which

the firm prefers to continue, is now

ρh(z; w) = max
{

ew + γ
∂h(z; w)

∂z
+

σ2

2
∂2h(z; w)

∂z2 + δr[h(z; w∗(z))− h(z; w)]− δ[h(z; w)− u(z)] , ρu(z)
}

,

and for productivities z /∈ Z j(w) (i.e., at productivity for which the firm prefers to dissolve the

match), the HJB is given by

h(z; w) = u(z) ∀z ∈ (Z j∗(w))c,

with h(·; w) ∈ C1(Z j∗(w)) ∩ C(R). The only difference relative to the baseline model is the term

δr[h(z; w∗(z))− h(z; w)], which captures the expected capital gain from wage renegotiation.

Similarly, the HJB equation of a firm employing a worker at log wage w with log productivity

z ∈ Zh(w), for which the worker prefers to continue the match, is now given by

ρj(z; w) = max
{

ez − ew + γ
∂j(z; w)

∂z
+

σ2

2
∂2 j(z; w)

∂z2 + δr[j(z; w∗(z))− j(z; w)]− δj(z; w) , 0
}

.

and the HJB equation evaluated at log productivity z /∈ Zh(w), when the worker prefers to dissolve

the match, is given by

j(z; w) = 0 ∀z ∈ (Zh∗(w))c,

with j(·; w) ∈ C1(Zh∗(w)) ∩ C(R). Again, the only difference is the term δr[j(z; w∗(z))− j(z; w)],

which captures the expected capital gain that a firm experiences when renegotiating the wage with

the worker.

Continuation Sets. The firm’s and worker’s optimal continuation sets are

Z j∗(w) = int {z ∈ R : j(z; w) > 0 or ez − ew > 0} ,
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Zh∗(w) = int
{

z ∈ R : h(z; w) > u(z) or 0 < ew − ρu(z) + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2

}
.

Observe the following property: Allowing for wage renegotiation within a match does not

affect the equilibrium conditions characterizing the continuation sets. We first explain the intuition

behind this result and then we formalize it.

To understand the intuition, we follow the same steps as in Supplementary Material I.1. We do

so by focusing on the continuation set of the worker—a similar logic applies to the continuation set

of the firm. Take a discrete time approximation ∆t of our model. Let I
j
∆t(z; w) denote the firm’s

continuation policy, which is equal to 1 if the firm continues the match and zero if the firm lays the

worker off. Continuing in the match dominates separating from it whenever

h∆t(z; w) = ew∆t + e−ρ∆tE(z;w)[h∆t(z′; w′)Ij(z′; w′) + u∆t(z′)(1 − Ij(z′; w′))] > u∆t(z), (III.1)

for the firm’s stopping policy Ij(z′; w′). Here, E(z;w)[·] denotes the conditional expectation given

wage renegotiations, the law of motion of productivity, and exogenous separations. Since the

worker is optimally choosing to stay or quit, we have h∆(z; w) ≥ u∆(z) for all z. Since condition

(III.1) holds for any policy Ij(z′; w′), it must also hold for Ij(z′; w′) = 0 for all (z′; w′). Therefore,

ew +
e−ρ∆tE(z;w)[u∆t(z; w)(z′; w′)]− u(z)

∆t
> 0.

Taking the limit as ∆t ↓ 0, we have

ew − ρu(z) + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2 > 0,

which is the same condition derived from our baseline model.

The reason why wage renegotiations do not affect the condition for continuation to be a weakly

dominating strategy is that they do not directly affect the worker’s or the firm’s value conditional

on a separation (i.e., u(z) and 0). Formally, define the law motion of the worker’s state variables as

dwt = (ŵ∗(z)− ŵt−)dNt,

dzt = γ dt + σ dW z
t ,

where Nt is a Poisson counter with arrival rate δr and ŵ∗(z) is the bargained wage (see below).
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Given the law of motion of the state and a stopping time τm, the value functions of the worker and

the firm are

h(w, z) = E0

[ˆ τm

0
e−ρtewt dt + e−ρτm

u(zτm)

]
,

j(w, z) = E0

[ˆ τm

0
e−ρt [ezt − ewt ] + e−ρτm × 0 dt

]
.

Let A be the characteristic operator of (wt, zt) adjusted by discounting—i.e., A(ϕ) = −ρϕ(w, z) +

δr(ϕ(w∗(z), z)− ϕ(w, z)) + γ
∂ϕ(·)

∂z + σ2

2
∂2ϕ(·)

∂z2 . Then, the pairs (w, z) for which the worker and the

firm prefer to continue for every stopping time are given by

ew +A(u) > 0,

1 − ew +A(0) > 0.

Wage Renegotiations. Let w∗(z) be the solution to a Nash bargaining problem with worker’s

bargaining weight given by α, which satisfies the Hosios (1990) condition:

w∗(z) = arg max
w

{
(h(z; w)− u(z))α j(z; w)1−α

}
.

We conclude this section with a discussion on the wage-renegotiation protocol. Our aim is to

expand our model by incorporating the on-the-job bargaining framework as presented in Gertler

and Trigari (2009), while keeping the economic environment unchanged. However, it is important

to make some comments. First, the opportunity cost for each agent during bargaining is the

corresponding value of separation (u(z) for the worker and 0 for the firm), not the corresponding

value at the current wage. This implies that agents commit to separate from the match in the

off-equilibrium event that bargaining fails—the conventional assumption adopted in the literature

(e.g., Shimer, 2005; Gertler and Trigari, 2009). For a deviation from this assumption, refer to Blanco

et al. (2025). Second, we adhere to the Hosios (1990) condition. The consequence of this assumption

is that the entry wage coincides with the bargained wage. While a deviation from the Hosios (1990)

condition would break this equality, the economic mechanisms affecting the entry and bargained

wages remain the same.

Equilibrium Characterization.

Using the change of notation adopted in Lemma 1—ŵ := w − z, ρ̂ := ρ − γ − σ2/2 and
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γ̂ := γ + σ2—we define

(
Û, Ĵ(w − z), Ŵ(w − z), θ̂(w − z)

)
=

(
u(z)

ez ,
j(z; w)

ez ,
h(z; w)− u(z)

ez , θ(z; w)

)
.

Rewriting the HJB equations using this change of notation, we get

ρ̂Û = B̃ + max
ŵ

f (θ̂(ŵ))Ŵ(ŵ)

(ρ̂ + δ)Ŵ(ŵ) = max
{

eŵ − ρ̂Û + δr (Ŵ(ŵ∗)− Ŵ(ŵ)
)
− γ̂Ŵ ′(ŵ) +

σ2

2
Ŵ ′′(ŵ) , 0

}
(ρ̂ + δ) Ĵ(ŵ) = max

{
1 − eŵ + δr ( Ĵ(ŵ∗)− Ĵ(ŵ)

)
− γ̂ Ĵ′(ŵ) +

σ2

2
Ĵ′′(ŵ) , 0

}
.

Here, the terms δrŴ(ŵ∗) and δr Ĵ(ŵ∗) are constant, since the reset wage ŵ∗ does not depend on the

current value of ŵ. Therefore, the problem is identical to that in the baseline model with completely

rigid wages (i.e., with δr = 0), with the exception of three aspects. First, the effective discount rate

for both workers and firms becomes ρ̂ + δ + δr instead of the previous expression ρ̂ + δ. Second,

the worker’s flow value is now given by eŵ + δrŴ(ŵ∗)− ρ̂Û instead of the previous expression

eŵ − ρ̂Û. Third, the firm’s flow value is now given by 1 − eŵ + δr Ĵ(ŵ∗) instead of the previous

expression 1 − eŵ. It is important to note that these expressions simplify to those from the baseline

model as δr → 0.

We now extend our key results to the case of on-the-job wage renegotiations.

Equilibrium Policies. We now analyze how on-the-job wage renegotiation affects equilibrium

policies associated with job creation and job destruction. In particular, we extend Proposition

2-Parts 1 to 3, which focus on job creation. We skip Part 4 of that proposition since its extension to a

setting with wage renegotiation is trivial.

Proposition III.1. With wage renegotiations à la Calvo (1983), the BRE has the following properties:

1. The joint match surplus satisfies

Ŝ(ŵ) =
1 − ρ̂Û

1 − δrT (ŵ∗, ρ̂ + δr)
T (ŵ, ρ̂ + δr),

where

T (ŵ, ρ̂ + δr) := Eŵ

[ˆ τm∗

0
e−(ρ̂+δr)t dt

]
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is the expected discounted duration of current wages and 1 > ρ̂Û > B̃. The following properties hold:

lim
δr↓0

Ŝ(ŵ) = (1 − ρ̂Û)T (ŵ, ρ̂) and lim
δr→∞

Ŝ(ŵ) =
(1 − ρ̂Û)

ρ̂ + δ
(III.2)

i.e., endogenous separations do not affect the surplus (and thus, the entry wage) when δr → ∞. s

2. The competitive entry wage—i.e., ŵ∗ = arg maxŵ f (θ̂(ŵ))Ŵ(ŵ)—exist and is unique. Moreover, it

solves:

ŵ∗ = arg max
ŵ

{
Ŵ(ŵ)α Ĵ(ŵ)1−α

}
= arg max

ŵ

{
η(ŵ)α(1 − η(ŵ))1−αT (ŵ, ρ̂ + δr)

}
,

with optimality condition

η′(ŵ∗)
(

α

η(ŵ∗)
− 1 − α

1 − η(ŵ∗)

)
︸ ︷︷ ︸

Share channel

= − Tŵ(ŵ∗, ρ̂ + δr)

T (ŵ∗, ρ̂ + δr)︸ ︷︷ ︸
Surplus channel

.

with η(ŵ∗) = α as δr → ∞.

3. Given η(ŵ∗) and T (ŵ∗, ρ̂ + δr), the equilibrium job finding rate f (θ̂(ŵ∗)) and the flow opportunity

cost of employment ρ̂Û are given by

f (θ̂(ŵ∗)) =
[
(1 − η(ŵ∗))

1 − ρ̂Û
1 − δrT (ŵ∗, ρ̂ + δr)

T (ŵ, ρ̂ + δr)/K̃
] 1−α

α

,

ρ̂Û = B̃ +
(

K̃α−1 (1 − η(ŵ))1−α η(ŵ)α 1 − ρ̂Û
1 − δrT (ŵ∗, ρ̂ + δr)

T (ŵ, ρ̂ + δr)
) 1

α
.

Proof. Now, we prove each equilibrium property.

1. The fact that ρ̂U ≥ B̃ follows from the same argument as before. Combining the sequence

and recursive formulations of the value functions, we have

Ŵ(ŵ) = Eŵ

[ˆ τm∗

0
e−(ρ̂+δr)t(eŵt + δrŴ(ŵ∗)− ρ̂Û)dt

]

Ĵ(ŵ) = Eŵ

[ˆ τm∗

0
e−(ρ̂+δr)t(1 − eŵt + δr Ĵ(ŵ∗))dt

]

where τm∗ is the optimal stopping time that determines match duration. Summing up, we
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have

Ŝ(ŵ) = Ŵ(ŵ) + Ĵ(ŵ) = (1 + δrŜ(ŵ∗)− ρ̂Û)T (ŵ, ρ̂ + δr).

Evaluating the expression for match surplus Ŝ(ŵ) at ŵ∗, we get

Ŝ(ŵ∗) = (1 + δrŜ(ŵ∗)− ρ̂Û)T (ŵ∗, ρ̂ + δr)

and thus

Ŝ(ŵ∗) =
1 − ρ̂Û

1 − δrT (ŵ∗, ρ̂ + δr)
T (ŵ∗, ρ̂ + δr).

Plugging this back into the above expression, we obtain

Ŝ(ŵ) =
1 − ρ̂Û

1 − δrT (ŵ∗, ρ̂ + δr)
T (ŵ, ρ̂ + δr),

which is an expression for Ŝ(ŵ) that depends only on Û, T (ŵ∗, ρ̂ + δr) and T (ŵ, ρ̂ + δr), but

not on Ŝ(ŵ∗). Since Ŵ(ŵ), Ĵ(ŵ) ≥ 0, then Ŝ(ŵ) ≥ 0 and thus

0 ≤ Ŝ(ŵ∗) = (1 − ρ̂Û)
T (ŵ∗, ρ̂ + δr)

1 − δrT (ŵ∗, ρ̂ + δr)︸ ︷︷ ︸
>0

⇐⇒ 0 ≤ 1 − ρ̂Û ⇐⇒ 1 ≥ ρ̂Û.

Therefore, 1 ≥ ρ̂Û ≥ B̃. To go from weak to strict inequalities, we follow the same steps as in

the baseline model.

Observe that, if τ̂m∗ denotes only the stopping times arising from endogenous separations,

then

T (ŵ, ρ̂ + δr) =
1

ρ̂ + δ + δr Eŵ

[
1 − e−(ρ̂+δ+δr)τ̂m∗]

Using these results and the algebra of limits, we obtain

lim
δr→∞

Ŝ(ŵ) =
1 − ρ̂Û
ρ̂ + δ

.

2. The proof is analogous. For log-concavity of the value functions, the Ricatti equation continues
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to hold following the redefinition of variables, but now

F(t) ≡ 2
σ2

[
(ρ̂ + δ + δr)− (et+ŵ − ρ̂Û) + δrŴ(ŵ∗)

Ŵ(t + ŵ)

]
.

3. The same equilibrium conditions apply.

Discussion of the Effect of Wage Renegotiations on Job Creation and the Entry Wage. Before

discussing Proposition III.1, it is important to highlight a distinction between the baseline model

and the model with on-the-job bargaining. In the baseline model, T (ŵ, ρ̂) represented the expected

discounted duration of a match, but now, T (ŵ, ρ̂ + δr) denotes the expected discounted duration

of the current wage. While these objects are trivially identical when δr = 0, as shown in equation

(III.2), they differ when δr > 0.

Proposition III.1 formalizes a simple intuition: As the frequency of bargaining increases, the

economic mechanisms influencing job creation resemble those in existing models of directed search.

To illustrate this, Figure III1 shows the value functions of the worker and the firm, the surplus of

the match, and the objective function Ĵ(ŵ)1−αŴ(ŵ)α that the bargained wage ŵ∗ maximizes. As

we can see in Panel A, when δr = 0, the surplus function exhibits curvature at ŵ = ŵ∗ since the

entry wage affects the likelihood of future separations. Instead, when δr = 0.2, the surplus function

becomes independent of the wage for ŵ close to ŵ∗ since the probability of an inefficient separation

is small (i.e., it is quite likely that the wage will be renegotiated before the match gets endogenously

dissolved). In the limit, as δr → ∞, the surplus function becomes a constant independent of ŵ.

Figure III2 plots the worker’s share evaluated at the entry wage and the flow opportunity cost

as a function of the renegotiation rate δr. As proposition III.1 shows, when δr → ∞, the worker’s

share of surplus η(ŵ∗) → α and the flow opportunity cost ρ̂Û∗ converges to the solution of the

following equation

ρ̂Û f b = B̃ +
(

K̃α−1 (1 − α)1−α αα 1 − ρ̂Û f b

ρ̂ + δ

) 1
α
,

i.e., the flow opportunity cost when there are no inefficient separations.

Static and Dynamic Considerations Behind Equilibrium Policies. We now extend Propositions

3, 4, and 5 within the model with wage renegotiations.

Proposition III.2. The following properties hold:
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FIGURE III1. EQUILIBRIUM VALUES AND CONTINUATION SETS IN ŵ-SPACE

ŵ

(A) Value functions with δr = 0

Ŵ(ŵ) Ĵ(ŵ)

Ŝ(ŵ) Ŵ(ŵ)α Ĵ(ŵ)1−α

ŵ∗

ŵ

(B) Value functions with δr = 0.2

Notes: The figure plots the equilibrium value functions of the firm Ĵ(ŵ) (red line) and the employed worker Ŵ(ŵ) (blue
line), the surplus of the match Ŝ(ŵ) (green line), and the “Nash bargaining” objective function Ĵ(ŵ)1−αŴ(ŵ)α (black
line) as a function of ŵ = w − z for δr = 0 and δr = 0.2. The vertical lines mark the boundaries of the firms’ continuation
set (−∞, ŵ+) and the worker’s continuation set (ŵ−, ∞).

FIGURE III2. EQUILIBRIUM POLICIES FOR DIFFERENT VALUES OF δr

0 5 · 10−2 0.1 0.15 0.2
0.54

0.56

0.58

0.6

δr

(A) η(ŵ∗)

η(ŵ∗) α

0 5 · 10−2 0.1 0.15 0.2

0.96

0.97

0.98

δr

(B) ρ̂Û

ρ̂Û ρ̂Û f b

Notes: Panels A and B plot the worker’s share evaluated at the entry wage η(ŵ∗) and the flow opportunity cost ρ̂Û as a
function of the renegotiation rate δr, respectively. The solid blue lines show the equilibrium values of η(ŵ∗) and ρ̂Û,
while the dotted red lines show the corresponding values when δr → ∞.

1. If γ = σ = 0, then the optimal policies are given by

(ŵ−, ŵ∗, ŵ+) = log
(

ρ̂Û − δr

ρ̂ + δ
α(1 − ρ̂Û), α + (1 − α)ρ̂Û, 1 +

δr

ρ̂ + δ
(1 − α)(1 − ρ̂Û).

)
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with η(ŵ∗) = α and T (ŵ∗, ρ̂ + δr) = 1/(ρ̂ + δ).

2. Assume γ̂ = 0 and α = 1/2, and a first-order approximation of the flow payoffs around ŵ∗. Then

ŵ± = ŵ∗± h(φ, Φ, δr

δ+ρ̂ ) with φ =
√

2 ρ̂+δ+δr

σ2 and Φ = 1−ρ̂Û
1+ρ̂Û

. If δr → ∞, then h
(√

2 ρ̂+δ+δr

σ2 , Φ, δr

δ+ρ̂

)
→

∞. Fix φ such that φh
(

φ, Φ, δr

δ+ρ̂

)
< 1.606107734475270, then for a given φ, h(φ, Φ, ·) is decreas-

ing in δr

δ+ρ̂ . Furthermore, η(ŵ∗) = α and

T (ŵ∗, ρ̂ + δr) =
1 − sech

(
φh
(

φ, Φ, δr

δ+ρ̂

))
δ + ρ̂ + δr .

3. Assume σ2 = 0 and γ̂ ≥ 0. Then,

ŵ− = log(ρ̂Û − δrŴ(ŵ∗)).

There exists a δ̄r satisfying ρ̂Û
eŵ∗−ρ̂Û

(ρ̂ + δ) < δ̄r < ρ̂Ûe(ρ̂+δ)T(ŵ∗)
´ T(ŵ∗)

0 (eŵ∗−γ̂s−ρ̂Û)ds
such that if δr ↑ δ̄r, then

ŵ− → −∞.

Proof. We depart from the equilibrium conditions:

(ρ̂ + δ + δr)Ŵ(ŵ) = eŵ − ρ̂Û + δrŴ(ŵ∗)− γ̂Ŵ ′(ŵ) +
σ2

2
Ŵ ′′(ŵ), ∀ŵ ∈ (ŵ−, ŵ+)

(ρ̂ + δ + δr) Ĵ(ŵ) = 1 − eŵ + δr Ĵ(ŵ∗)− γ̂ Ĵ′(ŵ) +
σ2

2
Ĵ′′(ŵ), ∀ŵ ∈ (ŵ−, ŵ+)

(1 − α)
dlog Ĵ(ŵ∗)

dŵ
= −α

dlog Ŵ(ŵ∗)
dŵ

,

Ŵ(ŵ−) = Ĵ(ŵ−) = Ŵ(ŵ+) = Ĵ(ŵ+) = 0

Ŵ ′(ŵ−) = Ĵ′(ŵ+) = 0

whenever γ̂ ̸= 0 or σ > 0. When γ̂ = σ = 0, we have the variation inequality holding without a

smooth pasting condition. We now show the properties of equilibrium policies.

Case γ = σ = 0: When γ = σ = 0, we have that

(ρ̂ + δ + δr)Ŵ(ŵ) = max{eŵ − ρ̂Û + δrŴ(ŵ∗), 0} (III.3)

(ρ̂ + δ + δr) Ĵ(ŵ) = max{1 − eŵ + δr Ĵ(ŵ∗), 0} (III.4)

(1 − α)
dlog Ĵ(ŵ∗)

dŵ
= −α

dlog Ŵ(ŵ∗)
dŵ

. (III.5)
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Evaluating the equilibrium conditions (III.3) and (III.4) at ŵ∗

Ŵ(ŵ∗) =
eŵ∗ − ρ̂Û

ρ̂ + δ
, Ĵ(ŵ∗) =

1 − eŵ∗

ρ̂ + δ
.

and using the equilibrium conditions again, we obtain

Ŵ(ŵ) =
eŵ − ρ̂Û

ρ̂ + δ + δr +
δr

ρ̂ + δ + δr
eŵ∗ − ρ̂Û

ρ̂ + δ
, Ĵ(ŵ) =

1 − eŵ

ρ̂ + δ + δr +
δr

ρ̂ + δ + δr
1 − eŵ∗

ρ̂ + δ
.

Next, we compute the reset wage. Given value functions, the equilibrium condition (III.5) yields

(1 − α)

−eŵ∗

ρ̂+δ+δr

1−eŵ∗

ρ̂+δ+δr +
δr

ρ̂+δ+δr
1−eŵ∗

ρ̂+δ

= −α

eŵ∗

ρ̂+δ+δr

eŵ∗−ρ̂Û
ρ̂+δ+δr +

δr

ρ̂+δ+δr
eŵ∗−ρ̂Û

ρ̂+δ

⇐⇒
(

1 +
δr

ρ̂ + δ

) (
α + (1 − α)ρ̂Û

)
= eŵ∗

(α + (1 − α))

(
1 +

δr

ρ̂ + δ

)
eŵ∗

= α + (1 − α)ρ̂Û.

The boundaries of the continuation region ŵ− and ŵ+ are given by:

Ŵ(ŵ−) = 0

eŵ− − ρ̂Û
ρ̂ + δ + δr +

δr

ρ̂ + δ + δr
eŵ∗ − ρ̂Û

ρ̂ + δ
= 0

eŵ− − ρ̂Û
ρ̂ + δ + δr +

δr

ρ̂ + δ + δr
α + (1 − α)ρ̂Û − ρ̂Û

ρ̂ + δ
= 0

eŵ− − ρ̂Û +
δr

ρ̂ + δ
α(1 − ρ̂Û) = 0

eŵ−
= ρ̂Û − δr

ρ̂ + δ
α(1 − ρ̂Û).

Similarly, ŵ+ is given by

eŵ+
= 1 +

δr

ρ̂ + δ
(1 − α)(1 − ρ̂Û).

The rest of the proof is similar to the proof in the baseline model without renegotiation.

Case γ̂ = 0 and α = 1/2: We follow the same strategy as in Proposition 4. Let us guess and

verify that eŵ∗
= 1+ρ̂Û

2 , ŵ− = ŵ∗ − h and ŵ+ = ŵ∗ + h for a given h. Using a Taylor approximation

of the flow profits around ŵ∗, we have that

(ρ̂ + δ + δr)Ŵ(ŵ) =
1 − ρ̂Û

2
+ eŵ∗

(ŵ − ŵ∗) + δrŴ(ŵ∗) +
σ2

2
Ŵ ′′(ŵ), ∀ŵ ∈ (ŵ∗ − h, ŵ∗ + h)
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(ρ̂ + δ + δr) Ĵ(ŵ) =
1 − ρ̂Û

2
− eŵ∗

(ŵ − ŵ∗) + δr Ĵ(ŵ∗) +
σ2

2
Ĵ′′(ŵ), ∀ŵ ∈ (ŵ∗ − h, ŵ∗ + h),

with the border conditions given by the value matching and smooth pasting conditions. It is easy to

check that when δr → ∞, Ŵ(ŵ) → Ŵ(ŵ∗), so h converges to ∞. Define J(x) =
Ĵ(x+ŵ∗)− 1−ρ̂Û

2(ρ̂+δ+δr)

eŵ∗ and

W(x) =
Ŵ(x+ŵ∗)− 1−ρ̂Û

2(ρ̂+δ+δr)

eŵ∗ . Following the same steps as in Proposition 4, we have that J(x) = W(−x)

with

(ρ̂ + δ + δr)W(x) = x + δrW(0) +
σ2

2
W ′′(x), ∀x ∈ (−h, h)

W(−h) = W(h) = − Φ
ρ̂ + δ + δr ; W ′(−h) = 0.

Notice that an increase in the renegotiation arrival rate δr, increases the effective discount factor

and, at the same time, it increases the worker’s flow value. It is easy to show that the solution of

the previous differential equation is given by

W(x) = Aeφx + Be−φx +
x

ρ̂ + δ + δr +
δr

δ + ρ̂
(A + B),

where φ =
√

2 ρ̂+δ+δr

σ2 . Writing the value matching conditions and operating, we obtain

A
(

eφh +
δr

δ + ρ̂

)
+ B

(
e−φh +

δr

δ + ρ̂

)
=

−Φ − h
ρ̂ + δ + δr

A
(

e−φh +
δr

δ + ρ̂

)
+ B

(
eφh +

δr

δ + ρ̂

)
=

−Φ + h
ρ̂ + δ + δr .

Solving for A and B,

A = − 1
ρ̂ + δ + δr

(
eφh + δr

δ+ρ̂

)
(Φ + h) +

(
e−φh + δr

δ+ρ̂

)
(h − Φ)(

eφh + δr

δ+ρ̂

)2
−
(

e−φh + δr

δ+ρ̂

)2

B =
1

ρ̂ + δ + δr

(
eφh + δr

δ+ρ̂

)
(h − Φ) +

(
e−φh + δr

δ+ρ̂

)
(h + Φ)(

eφh + δr

δ+ρ̂

)2
−
(

e−φh + δr

δ+ρ̂

)2 .

Thus,

−W(x) =

(
eφh+ δr

δ+ρ̂

)
(Φ+h)+

(
e−φh+ δr

δ+ρ̂

)
(h−Φ)(

eφh+ δr
δ+ρ̂

)2
−
(

e−φh+ δr
δ+ρ̂

)2

(
eφx + δr

δ+ρ̂

)
ρ̂ + δ + δr
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+

(
eφh+ δr

δ+ρ̂

)
(h−Φ)+

(
e−φh+ δr

δ+ρ̂

)
(h+Φ)(

eφh+ δr
δ+ρ̂

)2
−
(

e−φh+ δr
δ+ρ̂

)2

(
e−φx + δr

δ+ρ̂

)
+ x

ρ̂ + δ + δr .

Evaluating the smooth pasting condition, we obtain

−

(
eφh + δr

δ+ρ̂

)
(Φ + h) +

(
e−φh + δr

δ+ρ̂

)
(h − Φ)(

eφh + δr

δ+ρ̂

)2
−
(

e−φh + δr

δ+ρ̂

)2 φe−φh

−

(
eφh + δr

δ+ρ̂

)
(h − Φ) +

(
e−φh + δr

δ+ρ̂

)
(h + Φ)(

eφh + δr

δ+ρ̂

)2
−
(

e−φh + δr

δ+ρ̂

)2 φeφh + 1 = 0.

Operating on this expression and defining q = φh, we get

Φφ2 +
4δr

δ + ρ̂

sinh(q)− q cosh(q)
cosh(2q)− 1

= −2 sinh(2q)− 2q(cosh(2q) + 1)
cosh(2q)− 1

.

Thus,

Φφ2 = − 4δr

δ + ρ̂

sinh(q)− q cosh(q)
cosh(2q)− 1

− 2 sinh(2q)− 2q(cosh(2q) + 1)
cosh(2q)− 1

The following properties hold: − sinh(q)−q cosh(q)
cosh(2q)−1 converges to 0 when q ↓ 0, it increases until

q ≈ 1.606 and then decreases to 0 for q > 1.606. Since − sinh(q)−q cosh(q)
cosh(2q)−1 is increasing in q if the

solution q is lower than 1.606, we have that q(Φφ2, 4δr

δ+ρ̂ ) is decreasing in the second argument.

As in the baseline model, due to symmetry ŵ± = ŵ∗ ± h(φ, Φ, δr

δ+ρ̂ ), we have that T′
ŵ(ŵ

∗, ρ̂) = 0

and T (ŵ∗, ρ̂ + δr) =
1−sech(φh(φ,Φ, δr

δ+ρ̂ ))

δ+ρ̂+δr .

Case γ̂ > 0 and σ = 0: In this case, the stopping time is a deterministic function; hence, it is easier

to work with the sequential formulation:

Ŵ(ŵ) = max
T

ˆ T

0
e−(ρ̂+δ+δr)s (eŵ−γ̂s + δrŴ(ŵ∗)− ρ̂Û

)
ds,

Ĵ(ŵ) =

ˆ T(ŵ)

0
e−(ρ̂+δ+δr)s (1 + δr Ĵ(ŵ∗)− eŵ−γ̂s)ds.

In equation (A.28), T(ŵ) is the worker’s optimal policy. Taking the the FOC with respect to T(ŵ):

eŵ−γ̂T(ŵ) = ρ̂Û − δrŴ(ŵ∗).
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Solving the previous equation,

T(ŵ) =
ŵ − log

(
ρ̂Û − δrW(ŵ∗)

)
γ̂

.

Thus, if ŵ = ŵ∗, we have that ŵ− = ŵ∗ − γ̂T(ŵ∗) satisfies

ŵ− = log(ρ̂Û − δrŴ(ŵ∗)).

Following similar steps as in the baseline model, it is easy to show how Ŵ(ŵ∗) depends on γ̂ and

ρ̂ + δ. Now, we prove the last property—i.e., there exists a δ̄r < such that limδr→δ̄r ŵ− = −∞. That

is, if the bargaining probability is high enough but finite, then the continuation region becomes

unbounded. Observe that if δr ↑ δ̄r, where δ̄r := ρ̂Û
Ŵ(ŵ∗)

, then ŵ− → −∞. Since Ŵ(ŵ∗) < eŵ∗−ρ̂Û
ρ̂+δ ,

we have that

0 = ρ̂Û − δ̄rŴ(ŵ∗) > ρ̂Û − δ̄r eŵ∗ − ρ̂Û
ρ̂ + δ

, ⇐⇒ δ̄r >
ρ̂Û

eŵ∗ − ρ̂Û
(ρ̂ + δ).

Thus, we have a lower bound for δ̄r. To find an upper bound, we compute the value function

without on-the-job bargaining. In this case, we have that

Ŵ(ŵ∗) >
ˆ T(ŵ∗)

0
e−(ρ̂+δ)s (eŵ−γ̂s − ρ̂Û

)
ds > e−(ρ̂+δ)T(ŵ∗)

ˆ T(ŵ∗)

0

(
eŵ−γ̂s − ρ̂Û

)
ds

Thus,

δ̄r <
ρ̂Ûe(ρ̂+δ)T(ŵ∗)

´ T(ŵ∗)
0

(
eŵ∗−γ̂s − ρ̂Û

)
ds

.

Discussion of Static and Dynamic Consideration for Equilibrium Policies. Intuition suggests

that an increase in the frequency of bargaining will lead to a change in the quit and layoff triggers,

ultimately resulting in an extended match duration. Proposition III.2-Part 1 demonstrates that this

intuition holds true whenever there is no drift or shocks in idiosyncratic productivity. Furthermore,

it illustrates how the continuation set of the match changes as a function of the primitives (δr, ρ̂ +

δ, α, 1 − ρ̂Û). Importantly, the size of the surplus does not affect the separation thresholds when

δr = 0, but also affects the marginal effect of the frequency of bargaining since both terms appear

multiplicatively. Also, observe that when δr → ∞, then ŵ− → −∞ and ŵ+ → ∞. This property
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also holds for γ̂ > 0 and σ > 0.

Proposition III.2-Part 2 characterizes the interaction between the option value effect and the

frequency of on-the-job bargaining. The width of the continuation region depends on σ2

ρ̂+δ+δr , the

surplus, and the frequency of on-the-job bargaining. The first result, where we fix the value of

σ2, shows that if the frequency of bargaining increases, then the width of the continuation set

converges to infinity.

In the second result, we construct a specific case that highlights a counter-intuitive finding:

If there is an increase in δr and σ2 while keeping φ =
√

2 ρ̂+δ+δr

σ2 fixed, then the width of the

continuation region decreases. The intuition behind this result is not straightforward. To understand

it, first recall that in the baseline model, the width of the inaction region does not grow unboundedly

with the volatility of shocks due to lack of commitment. A firm paying a high ŵ is not willing

to wait before dissolving the match when the volatility of productivity shocks is high because

of the associated high probability of a sufficiently large and positive shock that would make the

worker quit. In this version of the model, this willingness to wait before dissolving the match

decreases when the frequency of bargaining increases. This is because a higher bargaining rate is

associated with a ŵ that tends to fluctuate well within the boundaries of the continuation region of

the match. Therefore, for the same increase in the volatility of productivity shocks, the probability

of experiencing a shock positive enough that makes the worker quit is much higher; thus, the firm

decides to dissolve the match sooner.

Proposition III.2-Part 3 characterizes the anticipatory effect of the drift on the quit threshold.

When δr = 0, we recover the result presented for the baseline model: The quit threshold is fully

static; i.e., the worker quits when ŵ < log(ρ̂ ˆ̂U). When δr > 0, the quit threshold is dynamic and

depends on the value of renegotiating the wage. A novel result arises: If the renegotiation frequency

is large enough, but not necessarily infinitely large, then the worker will never quit her job. The

intuition is that if the incentives to wait offered by wage renegotiation are significantly larger than

the opportunity cost, then the worker will never find it optimal to quit.

We finish this discussion with a joint analysis of equilibrium policies when σ = 0 and the

worker’s opportunity cost is kept constant. Figure III3-Panels A and C show the effect of the

drift for different values of the monthly frequency of wage renegotiation. As we can see, the

entry wage is increasing in the drift—as in the main text. In addition, the quit threshold is almost

independent of the value of the drift—as in the main text—and it depends mainly on the probability

of resetting the wage within the match. This is the result of two opposing forces almost balancing
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each other perfectly: i) for a fixed bargained wage, a larger drift and the associated higher quit

probability reduce the value of the worker,and ii) a larger drift results in a higher bargained wage

and, thus, a higher value when evaluated at that wage. Figure III3-Panels B and D show the

effect of the frequency of bargaining for different values of the annual drift. As we can see, for

a frequency large enough, the reset wage decreases—due a weaker anticipatory effect—and it

converges to the static Nash bargaining solution. Once the entry wage converges, the elasticity of

the quit threshold with respect to the renegotiation rate will become unboundedly large (recall that

ŵ− = log(ρ̂Û − δrŴ(ŵ∗))).

FIGURE III3. COMPARATIVE STATICS WITH RESPECT TO THE DRIFT
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Notes: Panels A and C plot the entry wage and the quit threshold as a function of the drift for three values of the monthly
frequency of wage renegotiation, respectively. Panels B and D plot the entry wage and the quit threshold as a function of
the frequency of bargaining for three values of the annual drift, respectively.

The CIR of Employment with Flexible and Sticky Entry Wages.

Before presenting the new results, we define new notation. Let τm denote the duration of the

current wage spell. Let τr denote the time elapsed until the arrival of an opportunity to renegotiate

the wage. Observe that, if τm < τr, then the match finishes in a separation. Otherwise, if τm = τr,

then the current wage is renegotiated. Furthermore, as in the baseline model, let gh(∆z) and gu(∆z)

be the distributions of ∆z across employed and unemployed workers, respectively. Observe that
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∆z now represents the cumulative shocks to revenue productivity z + p that the match experienced

since either its inception or its last wage renegotiation. The support of gh(∆z) is given by [−∆−, ∆+],

where ∆− := ŵ∗ − ŵ− and ∆+ := ŵ+ − ŵ∗. We denote by Eh[·] and Eu[·] the expectation operators

under the distributions gh(∆z) and gu(∆z), respectively.

Below, we describe the KFEs characterizing gh(∆z) and gu(∆z):

(δ + δr) gh(∆z) = (γ + χ)(gh)′(∆z) +
σ2

2
(gh)′′(∆z) for all ∆z ∈ (−∆−, ∆+)/{0}, (III.6)

f (θ̂(ŵ∗))gu(∆z) = (γ + χ)(gu)′(∆z) +
σ2

2
(gu)′′(∆z) for all ∆z ∈ (−∞, ∞)/{0}. (III.7)

gh(∆z) = 0, for all ∆z /∈ (−∆−, ∆+) (III.8)

lim
∆z→−∞

gu(∆z) = lim
∆z→∞

gu(∆z) = 0. (III.9)

1 =

ˆ ∞

−∞
gu(∆z)d∆z +

ˆ ∆+

−∆−
gh(∆z)d∆z, (III.10)

f (θ̂(ŵ∗))(1 − E) = δE +
σ2

2

[
lim

∆z↓−∆−
(gh)′(∆z)− lim

∆z↑∆+
(gh)′(∆z)

]
, (III.11)

gu(∆z) ∈ C, C2((−∞, ∞)/{0}), gh(∆z), C, C2((−∆−, ∆+)/{0})

The main difference with our baseline analysis is the additional δr term in the KFE for gh(∆z).

For this to hold, the renegotiated wage must be the same as the entry wage from unemployment,

which results from the assumption that the worker’s bargaining weight equals the elasticity of the

matching function.

We divide the proof of the extension of Proposition 6 to the case of wage renegotiations into three

propositions. Proposition III.3 relates the CIR to a perturbation of two Bellman equations describing

future employment fluctuations for initially employed and unemployed workers. This proposition

covers both the case with flexible and sticky entry wages. Proposition III.4 relates steady-state

moments of the perturbed Bellman equations to steady-state moments of the distribution of ∆z.

Finally, Proposition III.5 related the steady-state moments of ∆z to observable moments in the

steady-state.

Taken together, Propositions III.4 and III.5 extend Proposition 6 for the case with wage changes

within a job. Finally, Proposition III.6 extends Lemma 2 for the case with wage changes within a

job. Whenever the steps of the proof are the same as those in the baseline model, we omit them.

Proposition III.3. Given steady-state policies (ŵ−, ŵ∗, ŵ+) and distributions (gh(∆z), gu(∆z)), the CIR
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is

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

ˆ ∞

−∞
mE ,u(∆z, ζ)gu(∆z + ζ)d∆z,

where the value functions mE ,h(∆z) and mE ,u(∆z, ζ) are characterized by:

0 = 1 − Ess − (γ + χ)
dmE ,h(∆z)

d∆z
+

σ2

2
d2mE ,h(∆z)

d∆z2 + δ(mE ,u(0, 0)− mE ,h(∆z))

+ δr(mE ,h(0)− mE ,h(∆z)), (III.12)

0 = −Ess − (γ + χ)
dmE ,u(∆z, ζ)

d∆z
+

σ2

2
d2mE ,u(∆z, ζ)

d∆z2 + f (θ̂(ŵ∗ − ζ))(mE ,h(−ζ)

− mE ,u(∆z, ζ)) (III.13)

mE ,u(0, 0) = mE ,h(∆z), ∀∆z /∈ (−∆−, ∆+)

0 = lim
∆z→−∞

dmE ,u(∆z, ζ)

d∆z
= lim

∆z→∞

dmE ,u(∆z, ζ)

d∆z
(III.14)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

ˆ ∞

−∞
mE ,u(∆z, 0)gu(∆z)d∆z. (III.15)

Proof. We define the CIR of aggregate employment to an aggregate TFPR shock as

CIRE (ζ) =
ˆ ∞

0

ˆ ∞

−∞

(
gh(∆z, ζ, t)− gh(∆z)

)
d∆z dt.

Here, Et =
´ ∞
−∞ gh(∆z, ζ, t)d∆z is a function of ζ since aggregate shocks affect net flows into

employment. As in the main proof of Proposition 6, starting from the definition of the CIR, we can

derive

CIRE (ζ) =
ˆ ∞

−∞
lim
T →∞

mE ,h(∆z, T )gh(∆z + ζ)d∆z +
ˆ ∞

−∞
lim
T →∞

mE ,u(∆z, ζ, T )gu(∆z + ζ)d∆z,

where we define

mE ,h(∆z0, T ) ≡
ˆ T

0

[ˆ ∞

−∞

[
(1 − Ess) gh(∆z, t|∆z0, h) + (−Ess)gu(∆z, t|∆z0, h)

]
d∆z dt

]
mE ,u(∆z0, ζ, T ) ≡

ˆ T

0

[ˆ ∞

−∞

[
(1 − Ess) gh(∆z, ζ, t|∆z0, u) + (−Ess)gu(∆z, ζ, t|∆z0, u)

]
d∆z dt

]
.

Taking the limit as T → ∞, we have that the value functions mE ,h(∆z0) and mE ,u(∆z0, ζ) satisfy the

the condition in equation (III.12) to (III.15).

Notice that the main difference between equations (III.12)–(III.15) and equations (B.4)–(B.8)
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is the extra term in the HJB characterizing mE ,h(∆z0), which takes into account staggered wage

renegotiations.

The CIR of Employment with Flexible Entry Wages and Wage Renegotiations.

Proposition III.4. Assume flexible entry wages. Up to first order, the CIR of employment is given by:

CIRE (ζ)
ζ

= −(1 − Ess)
[(γ + χ)Eh[a] + Eh[∆z]]

σ2

− Ess

σ2 f (θ̂(ŵ∗))

(
(γ + χ)Ess

(
1 − ED

[
τm1{τm < τδr}

]
ED [τm]

)
+ Eh[∆z]F∆w

)
+ o(ζ),

where F∆w denotes the observed frequency of wage renegotiation within a match in the data.

Proof. The proof proceeds in three steps. Step 1 computes the value function for an unemployed

worker mE ,u(∆z) (when entry wages are flexible, the job-finding rate and this value function are

independent of the shock ζ, so we omit this argument). Step 2 computes the value for the employed

worker at ∆z = 0—i.e., mE ,h(0). Step 3 characterizes the CIR as a function of steady-state aggregate

variables and moments.

Step 1. The CIR is given by

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)
(1 − Ess),

with

0 = 1 − Ess − (γ + χ)
dmE ,h(∆z)

d∆z
+

σ2

2
d2mE ,h(∆z)

d∆z2 + δ

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)− mE ,h(∆z)

)

+ δr(mE ,h(0)− mE ,h(∆z)),

mE ,h(∆z) = − Ess

f (θ̂(ŵ∗))
+ mE ,h(0), ∀∆z /∈ (−∆−, ∆+)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)
(1 − Ess). (III.16)

Proof of Step 1. To show this result, observe that the solution to (III.13) and (III.14) is

mE ,u(∆z) = mE ,u(0), ∀∆z.
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Thus,

0 = −Ess + f (θ̂(ŵ∗))(mE ,h(0)− mE ,u(0)) ⇐⇒ mE ,u(0) = − Ess

f (θ̂(ŵ∗))
+ mE ,h(0). (III.17)

Replacing (III.17) into the CIR, we have the result.

Step 2. We show that mE ,h(0) = Ess
f (θ̂(ŵ∗))

(
(1 − Ess) + Ess

ED[τm1{τm<τδr}]
ED [τm]

)
− (1 − Ess)Eh[a],

where Eh[a] is the cross-sectional expected age of the match or the worker’s tenure at the current

match.

Proof of Step 2. Observe that mE ,h(∆z) satisfies the following recursive representation

mE ,h(∆z) = E

[ˆ τm

0
(1 − Ess)dt +

(
−1{τm < τδr} Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)∣∣∣∣∣∆z0 = ∆z

]
.(III.18)

Define the following auxiliary function

Ψ(∆z|φ) = E

[ˆ τm

0
eφt(1 − Ess)dt + eφτm

(
−1{τm < τδr} Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)∣∣∣∣∣∆z0 = ∆z

]
.

(III.19)

and note that Ψ(∆z|0) = mE ,h(∆z). Then Ψ(∆z|φ) satisfies the following HJB and border conditions:

− φΨ(∆z|φ) + (δ + δr) (Ψ(∆z|φ)− mE ,h(0)) + δ
Ess

f (θ̂(ŵ∗))

=(1 − Ess)− (γ + χ)
∂Ψ(∆z|φ)

∂∆z
+

σ2

2
∂2Ψ(∆z|φ)

∂∆z2 , (III.20)

Ψ(∆z, φ) =

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)
∀∆z /∈ (−∆−, ∆+).

Taking the derivative with respect to φ in (III.20), we have that

(δ + δr − φ)
∂Ψ(∆z|φ)

∂φ
− Ψ(∆z|φ) = −(γ + χ)

∂2Ψ(∆z, φ)

∂∆z∂φ
+

σ2

2
∂3Ψ(∆z|φ)

∂∆z2∂φ
,

∂Ψ(∆z|φ)
∂φ

= 0 ∀∆z /∈ (−∆−, ∆+).

Using Schwarz’s Theorem to exchange partial derivatives, evaluating at φ = 0, and using

Ψ(∆z|0) = mE ,h(∆z), we obtain

(δ + δr)
∂Ψ(∆z|0)

∂φ
− mE ,h(∆z) = −(γ + χ)

∂

∂∆z

(
∂Ψ(∆z|0)

∂φ

)
+

σ2

2
∂2

∂∆z2

(
∂Ψ(∆z|0)

∂φ

)
,(III.21)
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∂Ψ(−∆−|0)
∂φ

=
∂Ψ(∆+|0)

∂φ
= 0. (III.22)

Equations (III.21) and (III.22) correspond to the HJB and border conditions of the function ∂Ψ(∆z|0)
∂φ =

E
[´ τm

0 mE ,h(∆zt)dt
∣∣∣∆z0 = ∆z

]
. Evaluating ∂Ψ(∆z|0)

∂φ at ∆z = 0, using the occupancy measure and

result (III.16), we write the previous equation as:

∂Ψ(0|0)
∂φ

= E

[ˆ τm

0
mE ,h(∆zt)dt

∣∣∣∆z0 = 0

]

= ED [τm]

´ ∞
−∞ mE ,h(∆z)gh(∆z)d∆z

Ess

= ED [τm]

( Ess

f (θ̂(ŵ∗))
− mE ,h(0)

)
(1 − Ess)

Ess
, (III.23)

where ED [τm] is the mean duration of completed wage spells (the subscript highlights that the

moment can be computed from the data).25 From (III.19), we also have that

∂Ψ(0|0)
∂φ

= ED [τm]

[
(1 − Ess)

Eh[a]
Ess

+ mE ,h(0)
]
− E

[
τm1{τm < τδr}|∆z0 = 0

] Ess

f (θ̂(ŵ∗))
,(III.24)

Combining (III.23) and (III.24), and solving for mE ,h(0) we obtain:

mE ,h(0) =
Ess

f (θ̂(ŵ∗))

(
(1 − Ess) + Ess

E
[
τm1{τm < τδr}|∆z0 = 0

]
ED [τm]

)
− (1 − Ess)Eh[a].

Observe that E
[
τm1{τm < τδr}|∆z0 = 0

]
is equal to ED

[
τm1{τm < τδr}

]
—i.e., the average dura-

tion of wage spells that ended in a job separation.

Step 3. Up to a first-order approximation, the CIR is given by:

CIRE (ζ) = −(1 − Ess)
[(γ + χ)Eh[a] + Eh[∆z]]

σ2 ζ

− Ess

σ2 f (θ̂(ŵ∗))

(
(γ + χ)Ess

(
1 − ED

[
τm1{τm < τδr}

]
ED [τm]

)
+ Eh[∆z]F∆w

)
ζ + O(ζ2).

Proof of Step 3. To help the reader, we summarize below the conditions used in this step of the proof.

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)
(1 − Ess) (III.25)

25A completed wage spell starts when the worker earns a new wage (i.e., finding a new job or renegotiating the wage
with the current employer) and ends either when the match dissolves or the wage is renegotiated.
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with

(δ + δr)mE ,h(∆z) = 1 − Ess − (γ + χ)
dmE ,h(∆z)

d∆z
+

σ2

2
d2mE ,h(∆z)

d∆z2 + δmE ,u(0) + δrmE ,h(0),(III.26)

mE ,u(0) = mE ,h(∆z) ∀∆z /∈ (−∆−, ∆+)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z + mE ,u(0)(1 − Ess). (III.27)

1. Zeroth Order: If ζ = 0, condition (III.27) implies

CIRE (0) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

(
− Ess

f (θ̂(ŵ∗))
+ mE ,h(0)

)
(1 − Ess) = 0.

2. First Order: Taking the derivative of (III.25) we obtain

CIR′
E (ζ) =

ˆ ∞

−∞
mE ,h(∆z)(gh)′(∆z + ζ)d∆z,

which evaluated at ζ = 0 becomes

CIR′
E (0) =

ˆ ∆+

−∆−
mE ,h(∆z)(gh)′(∆z)d∆z.

Using condition (III.6) to replace (δ + δr) =
(γ+χ)(gh)′(∆z)+ σ2

2 (gh)′′(∆z)
gh(∆z) into equation (III.26), we

obtain

(γ + χ)(gh)′(∆z) + σ2

2 (gh)′′(∆z)
gh(∆z)

mE ,h(∆z)

=1 − Ess − (γ + χ)m′
E ,h(∆z) +

σ2

2
m′′

E ,h(∆z) +

(
(γ + χ)g′(∆z) + σ2

2 g′′(∆z)
g(∆z)

− δr

)
mE ,u(0)

+ δrmE ,h(0).

Multiplying both sides by gh(∆z)∆z and integrating between −∆− and ∆+,

0 = (1 − Ess)Eh[∆z]− (γ + χ)T1 +
σ2

2
T2 + mE ,u(0)T3 + δr (mE ,h(0)− mE ,u(0))Eh[∆z](III.28)

T1 =

ˆ ∆+

−∆−
∆z
[
m′

E ,h(∆z)gh(∆z) + mE ,h(∆z)(gh)′(∆z)
]

d∆z

T2 =

ˆ ∆+

−∆−
∆z
[
m′′

E ,h(∆z)gh(∆z)− mE ,h(∆z)(gh)′′(∆z)
]

d∆z
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T3 =

ˆ ∆+

−∆−
∆z
(
(γ + χ)(gh)′(∆z) +

σ2

2
(gh)′′(∆z)

)
d∆z.

Operating on the terms T1, T2, and T3, we get

T1 = mE ,u(0)(1 − Ess), (III.29)

T2 = −mE ,u(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
+ 2
ˆ ∆+

∆−
mE ,h(∆z)g′(∆z)d∆z, (III.30)

T3 = −(γ + χ)Ess +
σ2

2

[
∆z(gh)′(∆z)

∣∣∣∆+

∆−

]
. (III.31)

Combining (III.28), (III.29), (III.30), (III.31), and the results from Step 2, we obtain

0 = (1 − Ess)Eh[∆z]− (γ + χ)T1 +
σ2

2
T2 + mE ,u(0)T3 + δr (mE ,h(0)− mE ,u(0))Eh[∆z]

= (1 − Ess)Eh[∆z]− (γ + χ)mE ,u(0)(1 − Ess)

+
σ2

2

[
−mE ,u(0) ∆z(gh)′(∆z)

∣∣∣∆+

−∆−
+ 2
ˆ ∆+

−∆−
mE ,h(∆z)(gh)′(∆z)d∆z

]
+ . . .

+ mE ,u(0)
[
−(γ + χ)Ess +

σ2

2

[
∆z(gh)′(∆z)

∣∣∣∆+

−∆−

]]
+ δr Ess

f (θ̂(ŵ∗))
Eh[∆z]

= (1 − Ess)Eh[∆z]− (γ + χ)mE ,u(0) + σ2
ˆ ∆+

−∆−
mE ,h(∆z)(gh)′(∆z)d∆z + δr Ess

f (θ̂(ŵ∗))
Eh[∆z],

which implies

σ2
ˆ ∆+

−∆−
mE ,h(∆z)(gh)′(∆z)d∆z

=(γ + χ)

(
− Ess

f (θ̂(ŵ∗))
+

Ess

f (θ̂(ŵ∗))

(
(1 − Ess) + Ess

ED
[
τm1{τm < τδr}

]
ED [τm]

)
− (1 − Ess)Eh[a]

)

− (1 − Ess)Eh[∆z]− δr Ess

f (θ̂(ŵ∗))
Eh[∆z],

and

ˆ ∆+

−∆−
mE ,h(∆z)(gh)′(∆z)d∆z

=− (1 − Ess)
[(γ + χ)Eh[a] + Eh[∆z]]

σ2
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− Ess

σ2 f (θ̂(ŵ∗))

(
(γ + χ)Ess

(
1 − ED

[
τm1{τm < τδr}

]
ED [τm]

)
+ Eh[∆z]δr

)
.

Finally, since the probability of wage renegotiation is independent of the state of the match,

we have

F∆w dt =
ˆ ∆+

−∆−
Pr (bargaining in [t, t + dt)|∆z)

g(∆z)
Ess

d∆z = δr dt

and, therefore,

F∆w = δr.

Next, we write the CIR as a function of observable moments. Let ∆wB denote the log wage

change following a wage renegotiation and let lB(∆w) denote its distribution. In addition, let

lEUE(∆w) be the distribution of wage changes following a separation (i.e., wage changes between

two consecutive jobs). Our objective is to recover Eh[a] and Eh[∆z] from observable micro-data on

wage changes. To simplify the discussion, from now on we focus on the case with γ + χ = 0. Under

this parametric restriction, we only need to recover one moment: Eh[∆z]. The CIR of employment

is given by:

CIRE (ζ)
ζ

= −(1 − Ess)
[Eh[∆z]]

σ2 − Ess

σ2 f (θ̂(ŵ∗))

(
Eh[∆z]F∆w

)
+ o(ζ),

= −Eh[∆z]
σ2

(
1 − Ess + Ess

F∆w

f (θ̂(ŵ∗))

)
.

Two moments are informative of Eh[∆z]. The first one is obtained from the distribution of wage

changes within a match ∆ŵB. Under our assumptions that the bargaining process satisfies the

Hosios (1990) condition and the renegotiation hazard is independent of the idiosyncratic state, we

have that
Eh[∆z]
Ess

= −ED [∆wB].

In addition, the next proposition provides an alternative expression that remains valid when these

assumptions do not hold. Importantly, it is easy to show that the following proposition still holds

when the hazard rate for renegotiation is state-dependent.

Proposition III.5. Assume that γ + χ = 0. Up to first order, the CIRE (ζ) can be expressed in terms of
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data moments as follows:

CIRE (ζ)
ζ

=
1

3 f (θ̂(ŵ∗))

(
1 − F∆w

s+F∆w

)
ED

[
∆w3

EUE
]
+ F∆w

s+F∆w ED [∆w3
B][(

1 − F∆w

s+F∆w

)
ED

[
∆w2

EUE
]
+ F∆w

s+F∆w ED [∆w2
B]
]2 + o(ζ).

Proof. The goal is to express the sufficient statistics of the CIR, Eh[∆z], in terms of moments of the

distribution of ∆wEUE, ∆wB, and (τu, τm) when (γ + χ) = 0. Let x̃ ≡ x/ED [x] denote random

variable x relative to its mean in the data.

Our starting point is the KFE for the distribution of employed workers:

(
δ +F∆w

)
gh(∆z) =

σ2

2
g′′h (∆z),

where we used the result that F∆w = δr. Since the arrival rate of bargaining opportunities is

independent of the state of the match, we have that F∆wgh(∆z) = F∆wEsslB(−∆z). Thus,

δgh(∆z) +F∆wEsslB(−∆z) =
σ2

2
g′′h (∆z).

Multiplying both sides of the equation by ∆z2 and integrating, we

δ

ˆ ∆+

−∆−
∆z2gh(∆z)d∆z +F∆wEss

ˆ ∆+

−∆−
∆z2lB(−∆z)d∆z =

σ2

2

ˆ ∆+

−∆−
∆z2g′′h (∆z)d∆z.

Notice that Ess
´ ∆+

−∆− ∆z2lB(−∆z)d∆z = EssED [∆w2
B]. Integrating

´ ∆+

−∆− ∆z2g′′h (∆z)d∆z by parts, we

have

ˆ ∆+

−∆−
∆z2g′′h (∆z)d∆z = ∆z2g′h(∆z)

∣∣∆+

−∆− − 2
ˆ ∆+

−∆−
∆zg′h(∆z)d∆z

= ∆z2g′h(∆z)
∣∣∆+

−∆− − 2 ∆zgh(∆z)|∆+

−∆−︸ ︷︷ ︸
= 0

+2
ˆ ∆+

−∆−
gh(∆z)d∆z︸ ︷︷ ︸
= Ess

Operating, we have that

δ

ˆ ∆+

−∆−
∆z2gh(∆z)d∆z − σ2

2
∆z2g′h(∆z)

∣∣∆+

−∆− + EssF∆wED [∆w2
B] = σ2Ess ⇐⇒

sEssĒh[∆z2] + EssF∆wED [∆w2
B] = σ2Ess, ⇐⇒
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Ēh[∆z2] +
F∆w

s
ED [∆w2

B] =
σ2

s

Following Proposition B.3 when γ+χ = 0, ED
[
∆w2

EUE
]
=
[
Ēu
[
∆z2]+ 2Ēh [∆z] Ēu [∆z] + Ēh

[
∆z2]] =

Ēu
[
∆z2]+ Ēh

[
∆z2] with Ēu

[
∆z2] = σ2

f (θ̂(ŵ∗))
. Thus,

ED
[
∆w2

EUE
]
= Ēh

[
∆z2]+ σ2

f (θ̂(ŵ∗))
.

Combining the previous two results, we have that

ED
[
∆w2

EUE
]
+

F∆w

s
ED [∆w2

B] =
σ2

s
+

σ2

f (θ̂(ŵ∗))
,

or equivalently

σ2 =
sED

[
∆w2

EUE
]
+F∆wED [∆w2

B]

1 + s
f (θ̂(ŵ∗))

.

With this expression, we are ready to compute Eh[∆z]. Repeating the same steps as before but with

∆z3, we have that

sEssĒh[∆z3]−F∆wEssED [∆w3
B] =

σ2

2
6Eh[∆z]

Following similar steps as in Proposition B.3, we have that

Ēh
[
∆z3] = −ED

[
∆w3

EUE
]

Thus,

Eh[∆z] = −Ess
sED

[
∆w3

EUE
]
+F∆wED [∆w3

B]

3σ2 .

Combining this expression with the one for σ2, we have that

Eh[∆z]
σ2 = −Ess

sED
[
∆w3

EUE
]
+F∆wED [∆w3

B]

3(σ2)2

= −Ess

3

(
1 +

s
f (θ̂(ŵ∗))

)2 sED
[
∆w3

EUE
]
+F∆wED [∆w3

B][
sED

[
∆w2

EUE
]
+F∆wED [∆w2

B]
]2 .

Therefore, the CIR for employment is given by

CIRE (ζ)
ζ

= −Eh[∆z]
σ2

(
1 − Ess + Ess

F∆w

f (θ̂(ŵ∗))

)
+ o(ζ)
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=
1

3 f (θ̂(ŵ∗))

(
1 − F∆w

s+F∆w

)
ED

[
∆w3

EUE
]
+ F∆w

s+F∆w ED [∆w3
B][(

1 − F∆w

s+F∆w

)
ED

[
∆w2

EUE
]
+ F∆w

s+F∆w ED [∆w2
B]
]2 + o(ζ).

Discussion of Employment Dynamics With Flexible Entry Wages. How do infrequent wage

adjustments within the match affect the business cycle dynamics of employment when entry wages

are flexible? The CIR of employment provides valuable theoretical insight to answer this question.

Intuitively, with all other parameters in the model held constant, a higher frequency of wage

renegotiation decreases the CIR of employment: Some workers will be able to reset their wages

before transitioning into unemployment. The theory presented shows how the CIR of employment

is affected by on-the-job renegotiation, which is now given by

CIRE (ζ)
ζ

=
1

3 f (θ̂(ŵ∗))

(
1 − F∆w

s+F∆w

)
ED

[
∆w3

EUE
]
+ F∆w

s+F∆w Ē[∆w3
B][(

1 − F∆w

s+F∆w

)
ED

[
∆w2

EUE
]
+ F∆w

s+F∆w E[∆w2
B]
]2 + o(ζ).

Notice that, without wage bargaining (i.e., δr = F∆w = 0), we recover the expression in Proposition

6 for the baseline case:

CIRE (ζ)
ζ

=
1

3 f (θ̂(ŵ∗))

ED
[
∆w3

EUE
]

ED
[
∆w2

EUE
]2 + o(ζ).

A key result from this analysis is that the relevant micro-moments in the labor market are the

second and third moments of the distributions of wage changes within and across jobs, alongside

the probabilities of wage renegotiation and job-finding. The intuition for the relevance of the

job-finding rate is the same as in the baseline model. The reason the weighted sum of moments of

wage changes within and across jobs appear in the CIR is the simple application of Bayes’ law:

E[∆w3]

E[∆w2]2
=

E[∆w3|EUE]Pr(EUE) + E[∆w3|bargaining]Pr(bargaining)
(E[∆w2|EUE]Pr(EUE) + E[∆w2|bargaining]Pr(bargaining))2 ,

where Pr(EUE) + Pr(bargaining) = 1. Thus, the CIR of employment following a TFPR shock is

fully captured by the moments of the distribution of ∆z, which can be recovered with micro-data

on wage changes workers experience within and across jobs.

The CIR of Employment with Sticky Entry Wages and Wage Renegotiations.

As in the previous subsection, we focus on the case with no drift; i.e., γ + χ = 0. Furthermore,
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for pedagogical purposes, we consider the case with symmetric separation thresholds ∆− = ∆+.

Proposition III.6. Assume sticky entry wages. Up to first order, the CIR of employment is given by

CIRE (ζ)
ζ

=
1

f (θ̂(ŵ∗)) + s
η′(ŵ∗)
η(ŵ∗)

+ o(ζ), (III.32)

where

1. If ∆+ → ∞, then

dlog(η(ŵ))

dŵ

∣∣∣∣
ŵ=ŵ∗

=
ρ̂ + δ

ρ̂ + δ +N ∆w

[
α + (1 − α)ρ̂Û

]
α(1 − ρ̂Û)

.

2. If δr → ∞, then
dlog(η(ŵ))

dŵ

∣∣∣∣
ŵ=ŵ∗

= 0.

3. If ∆+ small enough, then
dlog(η(ŵ))

dŵ

∣∣∣∣
ŵ=ŵ∗

=

√
send

2ασ
.

Proof. We divide the proof into three steps. Step 1 characterizes mE ,u(∆z, ζ). Steps 2 uses the

equilibrium conditions to show (III.32). Step 3 extends proposition B.5 for the case with on-the-job

bargaining.

The starting point is the CIR for employment, which is given by

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

ˆ ∞

−∞
mE ,u(∆z, ζ)gu(∆z + ζ)d∆z, (III.33)

with

0 = 1 − Ess +
σ2

2
d2mE ,h(∆z)

d∆z2 + δ(mE ,u(0, 0)− mE ,h(∆z))

+ δr(mE ,h(0)− mE ,h(∆z)), ∀∆z ∈ (−∆+, ∆+)

0 = −Ess +
σ2

2
d2mE ,u(∆z, ζ)

d∆z2 + f (θ̂(ŵ∗ − ζ))(mE ,h(−ζ)− mE ,u(∆z, ζ)) (III.34)

mE ,u(0, 0) = mE ,h(∆z), ∀∆z /∈ (−∆+, ∆+) (III.35)

0 = lim
∆z→−∞

dmE ,u(∆z, ζ)

d∆z
= lim

∆z→∞

dmE ,u(∆z, ζ)

d∆z
(III.36)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

ˆ ∞

−∞
mE ,u(∆z)gu(∆z)d∆z (III.37)
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Step 1. The value function mE ,u(∆z, ζ) is independent of ∆z and satisfies

mE ,u(∆z, ζ) = − Ess

f (θ̂(ŵ∗ − ζ))
+ mE ,h(−ζ).

Proof of Step 1. We guess and verify that mE ,u(∆z, ζ) = mE ,u(0, ζ) for all ∆z. From the equilibrium

conditions (III.34) and (III.36),

0 = −Ess + f (θ̂(ŵ∗ − ζ))(mE ,h(−ζ)− mE ,u(0, ζ)).

Thus,

mE ,u(0, ζ) = mE ,u(∆z, ζ) = − Ess

f (θ̂(ŵ∗ − ζ))
+ mE ,h(−ζ).

Step 2. Up to a first-order approximation, the CIR is given by:

CIRE (ζ) =
1

f (θ̂(ŵ∗)) + s
η′(ŵ∗)
η(ŵ∗)

ζ + O(ζ2).

Proof of Step 2. From Step 1, we have that

CIR′
E (0) =

ˆ ∞

−∞
mE ,h(∆z)(gh)′(∆z)d∆z +

(
−Ess fŵ(θ̂(ŵ∗))

f (θ̂(ŵ∗))2
− m′

E ,h(0)

)
(1 − Ess).

Since
´ ∞
−∞ mE ,h(∆z)(gh)′(∆z)d∆z satisfies the same system of functional equations as the CIR of

employment with flexible entry wages and wage renegotiations characterized in Supplementary

Material III.1,

ˆ ∞

−∞
mE ,h(∆z)(gh)′(∆z)d∆z = −Eh[∆z]

σ2

(
1 − Ess + Ess

F∆w

f (θ̂(ŵ∗))

)
.

By the symmetry of separation thresholds, we have that

ˆ ∞

−∞
mE ,h(∆z)(gh)′(∆z)d∆z = 0.

and m′
E ,h(0) = 0. Thus,

CIR′
E (0) = −Ess fŵ(θ̂(ŵ∗))

f (θ̂(ŵ∗))2
(1 − Ess)
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Since under symmetry η(ŵ∗) = α and Tŵ(ŵ∗, ρ̂ + δr) = 0, from free entry and optimality of ŵ∗,

fŵ(θ̂(ŵ∗))

f (θ̂(ŵ∗))
= −η′(ŵ∗)

η(ŵ∗)
.

Thus,

CIR′
E (0) =

1
f (θ̂(ŵ∗)) + s

η′(ŵ∗)
η(ŵ∗)

.

Step 3. Define

τend = inf{t ≥ 0 : Γt /∈ (ŵ−, ŵ+)}

where (ŵ−, ŵ+) is a Nash equilibrium. Then, the worker’s share η(ŵ) satisfies the Bellman equation

η(ŵ) = E

[ ˆ τend

0
e−(ρ̂+δ+δr)t(ρ̂ + δ + δr)

(
eΓt − 1
1 − ρ̂Û

(1 − δrT (ŵ∗, ρ̂ + δr)) + 1
)

dt

+ e−(ρ̂+δ+δr)τend
1[∆zτend = ∆+]|Γ0 = ŵ

]

with

dΓt = (ρ̂ + δ + δr)σ2T ′
ŵ(Γt, ρ̂ + δr)dt + σ

√
T (Γt, ρ̂ + δr)(ρ̂ + δ + δr)dW z

t .

Proof of step 3. The HJB equations for the worker’s value and the surplus of the match are

(ρ̂ + δ + δr)Ŵ(ŵ) = eŵ + δrŴ(ŵ∗)− ρ̂Û +
σ2

2
Ŵ ′′(ŵ) ∀ŵ ∈ (ŵ−, ŵ+)

(ρ̂ + δ + δr)Ŝ(ŵ) = 1 + δrŜ(ŵ∗)− ρ̂Û +
σ2

2
Ŝ′′(ŵ) ∀ŵ ∈ (ŵ−, ŵ+),

respectively. Replacing η(ŵ) = Ŵ(ŵ)/Ŝ(ŵ) in the worker’s value function, we have ∀ŵ ∈
(ŵ−, ŵ+):

(ρ̂+ δ+ δr)(η(ŵ)Ŝ(ŵ)) = eŵ + δrη(ŵ∗)Ŝ(ŵ∗)− ρ̂Û +
σ2

2
(
η(ŵ)Ŝ′′(ŵ) + 2η′(ŵ)Ŝ′(ŵ) + η′′(ŵ)Ŝ(ŵ)

)
.

Using the HJB equation of the surplus to replace (ρ̂ + δ)Ŝ(ŵ) on the left hand side,

(1 − ρ̂Û + δrŜ(ŵ∗))η(ŵ) = eŵ − ρ̂Û + δrŜ(ŵ∗) + η′(ŵ)σ2Ŝ′(ŵ) + η′′(ŵ)
σ2

2
Ŝ(ŵ) ∀ŵ ∈ (ŵ−, ŵ+).

III30



Since Ŝ(ŵ) = 1−ρ̂Û
1−δrT (ŵ∗,ρ̂+δr)

T (ŵ, ρ̂ + δr), operating from the left hand side ∀ŵ ∈ (ŵ−, ŵ+), we have

(1 − ρ̂Û + δrŜ(ŵ∗))η(ŵ)

=eŵ − 1 +
1 − ρ̂Û

1 − δrT (ŵ∗, ρ̂ + δr)
+ η′(ŵ)σ2 (1 − ρ̂Û)T ′(ŵ, ρ̂ + δr)

1 − δrT (ŵ∗, ρ̂ + δr)
+ η′′(ŵ)

σ2

2
(1 − ρ̂Û)T (ŵ, ρ̂ + δr)

1 − δrT (ŵ∗, ρ̂ + δr)

In conclusion, we arrive at

η(ŵ) = (1 − δrT (ŵ∗, ρ̂ + δr))
eŵ − 1
1 − ρ̂Û

+ 1 + η′(ŵ)σ2T ′(ŵ, ρ̂ + δr) + η′′(ŵ)
σ2

2
T (ŵ, ρ̂ + δr).

Multiplying by (ρ̂ + δ + δr), we have, ∀ŵ ∈ (ŵ−, ŵ+):

(ρ̂ + δ + δr)η(ŵ) = (ρ̂ + δ + δr)

(
(1 − δrT (ŵ∗, ρ̂ + δr))

eŵ − 1
1 − ρ̂Û

+ 1
)

+ η′(ŵ)σ2(ρ̂ + δ + δr)T ′(ŵ, ρ̂ + δr) + η′′(ŵ)
σ2

2
(ρ̂ + δ + δr)T (ŵ, ρ̂ + δr).

Finally, recall the value-matching and smooth-pasting conditions

Ŵ(ŵ−) = Ĵ(ŵ−) = Ŵ(ŵ+) = Ĵ(ŵ+) = 0, Ŵ ′(−∆−) = Ĵ′(∆+) = 0.

By L’Hôpital’s rule,

lim
ŵ↓ŵ−

η(ŵ) = lim
ŵ↓ŵ−

Ŵ(ŵ)

Ŝ(ŵ)
= lim

ŵ↓ŵ−

Ŵ ′(ŵ)

Ĵ′(ŵ)
= 0

lim
ŵ↑ŵ+

η(ŵ) = lim
ŵ↑ŵ+

Ŵ(ŵ)

Ŝ(ŵ)
= lim

ŵ↑ŵ+

Ŵ ′(ŵ)

Ŵ ′(ŵ)
= 1,

which are the boundary values for the worker’s share at the separation triggers.

Finally, the equivalence of the combined Dirichlet-Poisson problem (i.e., the mapping from

the corresponding HJB equations and boundary conditions of η(ŵ) to the sequential formulation)

gives us the following Bellman equation

η(ŵ) = E

[ ˆ τend

0
e−(ρ̂+δ+δr)t(ρ̂ + δ + δr)

(
eΓt − 1
1 − ρ̂Û

(1 − δrT (ŵ∗, ρ̂ + δr)) + 1
)

dt

+ e−(ρ̂+δ+δr)τend
1[∆zτend = ∆+]|Γ0 = ŵ

]
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where

τend = inf{t ≥ 0 : Γt /∈ (ŵ−, ŵ+)}

and

dΓt = (ρ̂ + δ + δr)σ2T ′
ŵ(Γt, ρ̂ + δr)dt + σ

√
T (Γt, ρ̂ + δr)(ρ̂ + δ + δr)dW z

t .

Step 4. The following results hold:

1. If ∆+ → ∞, then

dlog(η(ŵ))

dŵ

∣∣∣∣
ŵ=ŵ∗

=
ρ̂ + δ

ρ̂ + δ +N ∆w

[
α + (1 − α)ρ̂Û

]
α(1 − ρ̂Û)

.

2. If δr → ∞, then
dlog(η(ŵ))

dŵ

∣∣∣∣
ŵ=ŵ∗

= 0.

3. If ∆+ small enough, then
dlog(η(ŵ))

dŵ

∣∣∣∣
ŵ=ŵ∗

=

√
send

2ασ
.

Proof of step 4.

Next, we prove the first two results. If ∆+ → ∞, then T (ŵ, ρ̂) =
´ ∞

0 e−(ρ̂+δ+δr)t dt = 1
ρ̂+δ+δr and

T ′
ŵ∗(ŵ∗, ρ̂+ δr) = 0. Similarly, if δr → ∞, then limδr→∞

T (ŵ,ρ̂+δr)
1−δrT (ŵ∗,ρ̂+δr)

= 1
ρ̂+δ ; thus, T ′

ŵ∗(ŵ∗, ρ̂+ δr) =

0. Therefore, by the definition of η(ŵ),

α = η(ŵ∗) =
Ŵ(ŵ∗)
S(ŵ∗)

=
E
[´ τm

0 e−(ρ̂+δr)t+wt |ŵ0 = ŵ∗
]
+ (δr

αŜ(ŵ∗)︷ ︸︸ ︷
Ŵ(ŵ∗)−ρ̂Û)T (ŵ∗, ρ̂ + δr)

1−ρ̂Û
1−δrT (ŵ∗,ρ̂+δr)

T (ŵ∗, ρ̂ + δr)

which gives, for both limits ∆+ → ∞ and δr → ∞:

E

[ˆ τm

0
e−(ρ̂+δr)t+wt |ŵ0 = ŵ∗

]
=
(
α + (1 − α)ρ̂Û

)
T (ŵ∗, ρ̂ + δr)

Take the limit ∆+ → ∞ and following similar steps as in the proof in the baseline model, we

obtain

η′(ŵ∗) = (ρ̂ + δ + δr)(1 − δrT (ŵ∗, ρ̂ + δr))
E
[´ τm

0 e−(ρ̂+δr)t+ŵt dt|ŵ0 = ŵ∗
]

1 − ρ̂Û
.

III32



Combining all these results, we finally obtain

η′(ŵ∗)
η(ŵ∗)

=
ρ̂ + δ

ρ̂ + δ + δr

(
α + (1 − α)ρ̂Û

)
α(1 − ρ̂Û)

.

Regarding the second limit δr → ∞, it is easy to show that η′(ŵ∗) = 0.

Following similar steps as in the proof for the baseline model, we have that if ∆+ is small, then

η′(ŵ∗)
η(ŵ∗)

=
1

2α∆+
.

Since 1
s+F∆w = T (0, δr) ≈ 1

δ+δr+(σ/∆+)2 and letting send = σ
∆+)2 denote the rate of endogenous

separations,
η′(ŵ∗)
η(ŵ∗)

=

√
send

2ασ
.

Discussion of Employment Dynamics With Sticky Entry Wages. Several insights emerge from

this analysis. From the first part of Proposition III.6, we learn that the presence of on-the-job wage

renegotiations affects the response of the job-finding rate to the TFPR shock. The intuition is that

the possibility of wage renegotiations reduces the effect of the TFPR shock on job creation: Shocks

stop affecting the real normalized wage following the first wage renegotiation. In the extreme case,

when the frequency of bargaining tends to ∞, job creation does not respond to the shock since

wages become renegotiated and reflect the occurrence of the shock immediately after the match is

created. The last part of Proposition III.6 shows that the possibility of wage renegotiations does not

affect the shape of the sufficient statistic for the elasticity of the worker’s share to the entry wage,

which continues to be determined by the frequency of endogenous separations. However, wage

renegotiations does affect the value of the elasticity of the worker’s share to the entry wage because

a higher frequency of wage renegotiations reduces the frequency of endogenous separations.
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